
APIT/GOR/ENS/93M-09

AD-A2 6 2 590

<21)0/9/3 /%

SPARTAN II: AN INSTRUCTIOVAL HIGH

RESOLUTION LAND COMBAT MODEL

THESIS

Edwin H. Harris III, Captain, USA
AFIT/GOR/ENS/93M-09 ,. D

DTIC
ELECTE
APR 0 5 1993 J

Approved for public release; distribution unlimitad

.93-06906,

98 4 02 0 IlIflhhi

AFIT/GOR/ENS/93M-09

SPARTAN II: AN INSTRUCTIONAL HIGH RESOLUTION LAND COMBAT
MODEL

THESIS

DWquALfl' 4

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In partial fulfillment of the
Acceslon For

Requirements for the Degree of

NTIS CRA&I
Master of Science in Operations Research DTIC TAB

Urnannounced [3
Justification � - --

Dist, ibutlon

Edwin H. Harris III, B.S. Availability Codes
Avail and/Ior

Captain, USA Dist Special

March 1993

Approved for public release; distribution unlimited

THESIS APPROVAL

STUDENT: CPT Edwin Hawkins Harris III CLASS: GOR-93M

THESIS TITLE: SPARTAN II: AN INSTRUCTIONAL HIGH RESOLUTION
LAND COMBAT MODEL

DEFENSE DATE: 24 February 1993

COMMITTEE NAME/DEPARTMENT SIGNATURE

ADVISOR NAJ Edward Negrelli/ENS

REALDER MAJ Bruce Marl an/MA LD1 {

The goal of this thesis was to improve SPARTAN, a high

resolution land combat model developed for use in a land

combat modeling course. Using the existing model concept,

the subsequent mcdel development progressed through code

development and initial implem entation. The new SPARTAN

models more combat processes and more accurately displays

current modeling techniques than the previous version did.

The model also is simple enough for students to readily

understand model components and their operation.

This thesis provides background information about the

original SPARTAN, outlines the development methodology, and

discusses the methods employed to model combat processes.

it also provides computational templates, a user's manual,

and the computer code. As designed, SPARTAN is an improved

model (although still a simple one), that should serve as a

useful tool for learning about the advantages and

disadvantages of high resolution combat modeling.

I wish to thank I4AJ Edward Negrelli and MPLJ Bruce

Marlan for their guidance and invaluable assistance in the

development of this thesis. also wish to thank the other

officers in the land combat modeling courses who proudly

served as guinea pigs and provided outstanding feedback

about model shortcomings. Finally, I wish to thank my wife

for tolerating the computer hermit for the past 8 months.

Edwin H. Harris

Table of Contents

Page
Preface ii

List of Figures. vii

List of Tables viii

Abstract ix

I. Introduction1

General 1
Background 1
Problem Statement 5
Objectives. 6
Definitions. e

High Resolution. 8
Stochastic Process. 8
Interactive Model9
Scenario 0 4. a 0 . 0 10

Terrain Representation 10
Movement . . . • " . O10
Target Engagement 10

Scope 11
Approach. 12
Equipment 14
Thesis Organization is

II. SPARTAN and Combat Modeling Review. 16

Introduction . , 16
SPARTAN Background Info;mation ; . . 16
Parent Models. 17
SPARTAN Hardware/Software Requirements. . 18
SPARTAN Documentation 19
SPARTAN Verification and Validation. . 20
SPARTAN Classification 21

Classification by Purpose . . . 21
Classification by Model Qualities. 23
Classification by Construction. . 25

SPARTAN's Scenario 28
Data Base Information 29
Terrain Functions. 29
Combat Processes. 30

Movement. 31
Target Search 34

Line of Sight. 35

iii

Target Acquisition 36
Target Selection 41
Target Engagement 43

Direct Fire 43
Indirect Fire 44

Impact Assessment 45
React tolFire # 46
Conmmand and Control 47

Output 48

III. Model Development Process. 51

Introduction 51
Development Methodology 51
Problem Definition . e. a 53
Model Formulation 56

Modeling Environment . . . & . 56
Modeling Effort 56
Modeling Assumptions. 56

Model Definition 57
Static Description & 0. . 57
Dynamic Description 59

Model Development 62
Creating a Database62
Event Set Management 63

Model Enrichment 65
Randomness 66

Instructional Components 67
The Preprocessor 66

Terrain Editor 68
Soldier Attribute Editor . 69
Probability of Hit Editor . . . 69
Event List Editor 170
Help Menu 70

SPARTAN . # * * * * e s 70
Help Menu 70
Simulation Graphics 71
Output 72

Model Assessment 72
Assessment Process. . a 0 0 0 0 73
GAO Criteria Assessment 73

Documentation 74
Validity 75
Verification 76

Model Objective Assessment 76
Portability 76
Useability 77
simplicity 77
Applicabilityr. 77

Summuary 78

IV. Combat Processes. 79

Introduction. 79
Movement. 79

stoepmete 80
Movement Time .. .80

Obstacles 81 .

SPARTAN Movement Process. 82.. 8
Limitations and Assumptions. 84

Target Search . •. 84
Condition I: Sufficient signature. . 86
Condition II: Line of Sight. . . . 88
Condition III: Detection. 90
SPARTAN Search Process . * o 90
Heuristics 93
Limitations and Assumptions. . . . 95

Target Selection 96
SPARTAN Selection Process . . *. 97
Limitations and Assumptions. . . . 99

Direct Fire Engagements. 99
Probability of Sit 100
Grenade Launcher . 101
SPARTAN Direct Fire Process. 102
Limitations and Assumptions. . . . 105

Indirect Fire Engagements 105
SPARTAN Indirect Fire Process . . . 108
Limitations and Assumptions. . . . 110

Impact Assessment 110
React to Fire. 112
Change Formation and Direction 113

Change Formation/Dirmction Process 113
Limitations and Assumptions . . . 115

Command and Control 115
Swunary o o e a . .116

V. Conclusion 117

Introduction 117-
sununary... . . 117
Recommendations . . : 120
Conclusion. 121

Appendix A: Threshold Pinf Template 122

Appendix B: Probability of Acquisition Template . 127

Appendix C: Probability of Hit Template 133

Appendix D: SPARTAN Operating Instructions 143

Appendix E: Preprocessor Code 166

Appendix F: Simulation Code 205

Bibliography 248

v

Vita S .. 250

vi

A

List of Ficures

Figure Page

1. Model Development Process 52

2. Conical Methodology Outline 53

3. Move Process 83

4. Condition I of the Search Process 92

5. Line of Sight Process 93

6. Detection Process (Condition III) 94

7. Select Process 97

8. Direct Fire Process 103

9. Indirect fire Casualty Assessment 108

10. Indirect Fire Process 109

11. Impact Assessment Process 111

12. Changing Direction and Formation Process . . 114

vii

Liet of Tables

Table Page

1. Attributes of Spartan's Entities . . . 25

2. Terrain Attributes 58

3. Event Attributes 58

4. Soldier Attributes 59

5. System Attributes 59

6. Default Data Files 63

7. Target Dimensions 87

8. Default Weapons' Assignments 99

9. Reaction to Fire Probabilities 112

10. SPARTAN's Scheduled Events 145

11. Default Force Ccmpozition. 146

12. Map Color Translation 147

13. React to Fire 154

14. Soldier Attributes 159

15. Default Data Files 162

16. SPARTAN Data Files 163

viii

AFIT/GOR/ENS/93M-09

Abstract

This project improved SPARTAN, a high resolution land

combat model demonstrator. SPARTAN was originally developed

as a hands-on trainer for land combat modeling students

because there were no models specifically designed to teach

the analysts how the models function.

SPARTAN is built to demonstrate the techniques used in

the current generation of US Army high resolution models.

Like the original, the model is pr1marily a small scale

attrition (both direct and indirect fire) model. The model

represents 12 soldieri involved in the following processes:

target search, target selection, direct fire engagement,

indirect fire engagement, movement, reaction to fire,

obstacle breaching, and some elements of command and

control. The emphasis on model development was to keep the

logic simple, yet accurately portray current high resolution

modeling techniques as used in the more capable models,

JANUS and the Combined Arms and Support Task force

Evaluation Model (CASTFOREM). SPARTAN contains nurderous

features that allow the user to observe, in great detail,

how the model represents the various activities of the

soldiers. An educational assessment of the model was

performed by students and faculty at the Air Force Institute

of Technology.

ix

SPARTAN II: AN INSTRUCTIONAL HIGH RESOLUTION
LAND COMBAT MODEL

The purpose of this thesis in to document my

improvements tc SPARTAN, the prototype high resolution land

combat model demonstrator. This chapter provides background

information about my efforts to improve SPARTAN's value as

an instructional tool. The first section of this chapter

reviews the increasing importance of simulations to the Army

adsome of the p~oblems with simulation use. The next

section identifies the problem that SPARTAN attempts to

solve and the specific objectives of my improvements to

SPARTAN. The next section defines some important modeling

terms that are used throughout this thesis. This is

followed by an outline of the scope of my improvements to

SPARTAN and the approach that I employed in making these

improvements. I then identify the equipment requirements

for SPARTAN. The last section will outline the thesis

organization.

A model is "an idealization, ar abstraction of a part

of the real world" (20:211) and can be a set of mathematical

equations, a scenario, a board game cr a computer

simulation. The military uses models and simulations to

accomplish a variety of tasks such as (4:6):

1) Technical evaluation

2) Doctrinal evaluation

3) Force-structure evaluation

4) Analysis of military and diplomatic factors and
international relations

5) Training and education

6) Development of research methodology

Thus, one military model might estimate the best way to

allocate nuclear bombers, and missiles to ensure destruction

of enemy targets while another might evaluate the

effectiveness of new infantry rifles.

The Army has been interested in models for all of the

reasons above, but has been particularly interested in

models for force structure and doctrinal evaluation, and for

traininq and education. Over the years, the Army has

developed models that simulate theater level conflicts and

other models and simulations that replicate single vehicles

and soldiers. These models are used at every echelon of the

Army, from the vehicle crew level to Corps and Army staffs

and commanders.* One primary reason for this increased use

of models and simulations is money. it. costs less to

practice on a machine or computer, than it does to usie tanks

(or other expensive equipment), personnel, and other

valuable training resources. This increasing reliance on

2

IV

simulations shows no sign of slowing and, in fact, will

probably increase as defense budgets continue to decline.

General Frederick M. Franks, Commoanding General, U.S.

Army Training & Doctrine Commnand, addressed the use and

importance of simulations to the Army in an interview

published in the "ARMED FORCES JOURNAL":

We put all that together and decided that the Army
needs to provide itself an institutionalized way to
continue to examine if we're going in the right
direction for the circumstances' within which we are
now called to serve the nation.
..the Louisiana Maneuvers. They will give us the

opp~ortunity to use simulations, which have advanced
considerably in their ability to replicate theI
battlefield with great fidelity at all levels on
perhaps an annual basis to test, in an operational
scenario, the Army's ability to fulfill its Title 10
responsibilities... .(21:67-68)

In fact, General Franks has proposed a system of "battle,

laboratories" where simulations will be tied in with actual

field units to test and develop mcre effective tactics and

training scenarios (21:67-68). Thus, simulations and modelIs

will play an increasingly important role in the Army.

While models and simulations are of great benefit to

the Army, they also present a danger. This danger is that

model results might be accepted as truth as opposed to being

only one sample of many possible truths. Decision makers

and analysts should keep this aspect of models in mind. A

1980 GAO report highlights this fact, stating that models

"are intended to be used as an extension of, rather than a

replacement for, human Judgment" (12:9).

3

This danger is exacerbated in the combat models used by

the Army, because these models replicate actions and

decisions of humans under stress. This makes the problem of

modeling combat "squishy". Squishy problems "do not have a

formulation that is both analytically tractable (based on

science, empirical research, etc.), and which unambiguously

captures the substantive problem" (12:9). This fact makes

modeling such problems difficult and the formulation and

conclusions for them are "inherently subjective--requiring

and depending on careful and considered judgment by the

decision maker" (12:9).

Thus, the increased reliance of the Army on simulations

and models is going to require an increased understanding on

the part of decision makers about the way combat processes

are modeled. The problem is that combat simulations tend to

be complex, modeling thousands of entities and hundreds of

systems and processes. CASTFOREM (one of the Army's land

combat models), for example, models combined arms ground

conflicts and includes such systems as helicopters, fixed

wing aircraft, air defense, and dismounted soldiers. It

also takes into account weather, ambient light conditions,

and battlefield obscurants. It models direct fire weapons,

directed energy weapons, and indirect fire weapons

(14:C-1;6:1-11). The complexity caused by modeling all of

this ensures that the decision maker will probably not know

4

what assumptions and modeling techniques the model

incorporates. Therefore, he probably does not understand

the quality of the data on which he is basing his decision.

Thus, it is extremely important that the analyst/modeler

performing the study or analysis understands the assumptions

and methods used in the model and is able to coummunicate the

advantages and disadvantages of these to the decision maker.

Unfortunately there is very little written about

modeling combat processes and there are no simulations or

models designed specifically to tLain analysts about

modeling these processes. In an effort to correct this

problem, CPT David Cox, a 1992 Air Force Institute of

Technology Operations Research masters student, developed a

prototype land combat model demonstrator called SPARTAN.

SPARTAN is a high resolution combat model "developed for use

as an instructional aid in land combat modeling courses"

(5:ii). It uses modeling techniques that are representative

of the techniques used in the two premier Army high

resolution models, CASTFOREM and JANUS (5:ii).

Problem Statement

The Army makes extensive use of high resolution land

combat models for analysis and to train brigade and

battalion commnanders and staffs. A search of the 528 games,

models and simulations listed in the Catalogue of Wargaming

and Military Simulations Modelina however, reveals that

there is no suitable model to train the analysts who use

5

these models (1'A:iii). CPT David Cox (GOR-M92) developed

SPARTAN to Ifill this need. SPARTAN does demonstrate some of

the basic current modeling techniques, but leaves much room

for improvement..

The purpose of this thesis effort is to continue

development of SPARTAN, and improve its value as an

instructional tool for land combat modeling courses.

Oblectives

SPARTAN is a war game. At wargame can be defined as:

a simulated military operation involving two or more
opposing forces and using rules, data, and procedures
designed to depict an actual or hypothetical real-life
situation. It is used primarily to study problems of
military planning, organization, tactics, and
strategy. (4:8)

Because of the broad range of modeling activities under

the general heading of war games, there are few hard rules

for designing them. There are, however, "certain principles

o f modeling which are international and, in fact, transcend

technique, military focus, or specific model" (2:9).

Because these are principles and not rules, building a war

game/combat model becomes something of an art. The

successful combat modeler should ensure the model (4:9-11):

1) Pits customer requirements.

2) Produces the appropriate criteria for analysis.

3) Resolves the conflict between the desired level of
modeling detail and uncertainties in input data.

4) Deals with uncertainties either explicitly,
implicitly, parametrically or by hedging.

5) is in great breadth or in great detail, but not
both.

6) Becomes more rigid as the focus of the application
becomes closer to chronological time.

7) Does not exceed the capabilities and level of
detail as constrained by the state of the art of
the computing equipment,

8) Is invisible to the user.

Using these principles, I decided upon the following

objectives in continuing the development of SPARTAN:

portability, simplicity, applicability, and usability.

By portability, I refer to the ease of transferring

SPARTAN. This means that SPARTAN (and its supporting data

files) is small enough (less than 500K) to be kept on a

single disc and is written in a generally available and

easily decipherable language (QuickBASIC). It also means

that SPARTAN does not require a super computer. It is, in

fact, designed to be run on a-personal computer.

Simplicity refers to the number of combat processes

SPARTAN demonstrates. This number is kept to a minimum to

avoid complexity. Complexity would def eat SPARTAN' s purpose

of being an easily understood instructional tool and would

also limit its portability.

SPARTAN is also applicable. The processes, as far as

possible, accurately portray techniques used by JANUS and

CASTYOREK. These techniques may or may not be good

replications of reality, but by using SPARTAN, students will

gain insight into the implications of using these

techniques.

7

SPARTAN is usable. It produces output, again similar to

the output from CASTFOREM and JANUS, that can be used for

analysis. SPARTAN accepts varied input so sensitivity

analysis can be performed. SPARTAN also is designed so that

users need not be infantry experts or computer geniuses to

run the simulation.

Deinitiouns

This section defines a few modeling terms that will be

used throughout the remainder of this thesis.

High Reg1Igtion. A high resolution combat model is a

model that simulates activities of individual entities,

rather than aggregated units. An entity is an individual

soldier, tank, cannon, or aircraft etc. as opposed to an

aggregate (unit) composed of two or more individuals. Each

individual entity has its own characteristics and the

interactions of these individuals determine the outcome of

conflicts. The individual combatant sees the battle from

his own perspective and conflicts are resolved on an

individual shooter-target basis. The emphasis on detail

makes representation believable, but limits the number of

combatants that can be modeled. This is because the

thousan ds of entities doing several processes overwhelm the

ability of the computer (13:1-6,1-7).

Stochastic Process. Most high resolution combat models

use stochastic processes to model uncertainty. A stochastic

process is a process where the next event is decided in a

8

probabilistic manner. There may be several posoible next

events, some more likely to occur than others. This type of

process is particularly appropriate when describing combat

because of the uncertainty of outcomes in battle. Using

models that employ stochastic processes to determine

outcomes, injects uncertainty and chance outcomes and

provides a more realistic representation of combat (13:1-6).

Modols frequently employ the Monte Carlo method to achieve

this probabilistic outcome. Using this method, a random

number is drawn from a distribution andicompared to a

threshold probability of some event occurring. If the

random number is lese than the threshold, the event occurs,

otherwise, the event'does not occur.

Interactive Model. All models are,, in reality,

interactive in that they require some f~rm of user input.

This can be either data input prior to unning the model or

decision input during model runs (or a ombination of both).

I will refer to interactive models as ones in which users

can provide input (interact with the computer) during model

runs to influence model outcomes. In combat models, these

inputs take the form of tactical decisions such as where to

move units, who to engage with indirect or direct fire, who

to supply, and other realistic battlefield decisions. This

type of model is very useful as a training tool because it

allows people to react to situations, but is less useful for

analysis because the input is not controlled. This makes it /

/

9

difficult to determine an audit trail of causal

relationships.

Scenario. The scenario is the situation that

establishes the initial conditions for the model. The

scenario includes friendly and enemy force structures,

weapons, plans, and tactics. Scenarios also include terrain

and environmental considerations.

Terrain revresentation. Terrain representation is one

of the most complicated and most important aspects of land

combat models. Normally, terrain is represented by

subdividing it into regularly shaped polygons of various

sizes. Each of these polygons normally contain terrain of

the same characteristics, such as slope, vegetation, and

trafficability. These characteristics are assigned values

and become the polygon's attributes.

Movement. Land combat models generally must simulate

the movement of combatants across the battlefield. Rates of

advance depend on attributes of the moving entity such as

speed, weight, cross country mobility, and formation and on

the attributes of the terrain polygon through which the

entity is moving.

Taraet Enaagement. Target engagement is actually

composed of the three sequential subprocesses of target

detection, target selection and target engagement (firing

the weapon). All three of these processes are stochastic.

Entities search an area and have a probability of detecting

c target. if more than one target is detected, the entity

10

then rank -rders his detected targets based on target

prioritization rules given by the model or by the user.

Based on these rules he may or may not fire. if he fires,

he has a probability of success of hitting the target based

on range, siz~e of target and weapon accuracy. if he hits

the target, he has a probability of either wounding or

killing the target.

CPT Cox was successful in designing a prototype model

that demonstrated basic high resolution combat modeling

techniques. CPT Cox 's version of 8PARTAN demonstrated the

following (5:94):

1) Time keeping and an implementation technique for
event set management and synchronization.

2) Algorithms used to model movement, terrain, target
detection, target selection, weapon accuracy, and
attrition.

3) Techniques to model decision logic of the soldier
as well as simple commnand and control issues.

4) Stochastic techniques for representing the
occurrence of randomness on the battlefield.

5) Data requirements and storage techniques for
various model components.

6) The overall process of developing a combat
simulation model from concept to implementation.

7) An example of components for a typical combAt
model such as the scenario input, a preprocessor,
the simulation model, various types of output, and
accompanying documentation.

There were, however, several areas I felt could be improved.

These areas are (5:94-100):

1) Computer graphics. They were simplistic and
did not enhance understanding of model processes.

2) Movement processes. Movement is not tied to any
formation. All entities move independently.

3) Terrain issues. There is no obstacle play and
terrain detail is lacking.

4) Weapons. CPT Cox used made up weapons accuracy
data and made up weapons. There is no indirect
fire modeling.

6) Preprocessor activities. Using the preprocessor is
difficult. It does not make clear what the effect
of altering data files will have on the simulation.

I limited the scope of my improvements to these areas.

There are ten stages of development of simulation

models. These are (19:10-11):

1) Problem Formulation

2) Model Building

3) Data Acquisition

4) Model Translation

5) Verification

6) Validation

7) Strategic and Tactical Planning

8) Experimentation

9) Analysis of results

10) Implementation and documentation

This chapter serves to accomplish the first stage of this

process, problem formulation. Given the nature of this

problem and the purpose of SPARTAN, I focused my thesis

12

efforts on stages 2-6 to make SPARTAN a more effective high

resolution combat model demonr~rator.

CPT Cox had already done stage 2 to some degree, but

because of the improvements and additions that I made to

SPARTAN, it was necessary to redesign his model. Only a few

of the original model components remain.

The &cquiuition of data necessarily supported my

improvements of SPARTAN. I continued to rely on James

Hartman's unpublished notes on high resolution combat

modeling, as did Cox, for model methodology and theory.

Army Field Manuals were helpful for realistic force

structuring, movement form~ations, and movement speeds. This.

in turn helped demonstrate model invisibility. I received
N

weapons accuracy data from the Army Material Systems

Analysis Activity (AMSAA) for both US and Soviet squad

weapon:, this data combined with Enaineerina Desian

Handbook. Army Weapon Systems Analysis. Part One, helped in

modeling different weapons' effects. Since the purpose of

SPARTAN is to demonstrate techniques used in the Army's two

premier models, I compared all of SPARTAN's combat processes

to those modeled in CASTFOREM and JANUS. Another major

improvement was the modeling of indirect fire. The

CASTFOREM and JANUS manuals and FM 23-91 Mortar Gunnery were

helpful for this.

The big step in making improvements was the translation

of improvemcnts into computer code. CPT Cox tried, as much

as possible, to use structured block progranming to make

13

SPARTAN. I also made use of structured programming because

it is easier to troubleshoot. QuickBASIC supported this

approach. I did the most difficult tasks first, such as

improving graphics, interface and movement, since these

carried over into all other aspects of the model.

Verification is the process of ensuring that model

components are functioning as intended (19:11). This was an

ongoing process. As I made programming changes and

additions, I verified they did what I wanted them to. I

continuously documented my efforts so that follow on work

could be done.

The last stage of the model development process is that

of validation. Validation is the process of ensuring that

model results are correct (19:11). This was difficult as

there are "no xperimentally verified models of combat

processes" (3: 6). Instead of validation, I used the same

validation criteria as CPT Cox, that of reasonableness (face

validity). Since SPARTAN's results looked reasonable, I

accepted them as valid. I also used blind testing, issuing

documentation and the program to APIT land combat modeling

students to see if SPARTAN achieved its intended purpose,

that of accurately demonstrating high resolution land combat

modeling techniques.

Eauipment

The equipment that I used for this thesis is the same

as listed by Cox:

14

1) IBM AT compatible microcomputer with minimum EGA

color graphics

2) Microsoft DOS 3.3

3) Microsoft QuickBASIC 4.5 programming language

4) MATHCAD 2.5 Mathematics Software

SPARTAN runs on any IBM or IBM clon= with DOS 3.0 or better.

I designed and built SPARTAN on a 286 and have run ;t on

486s. Obviously, it runs faster on 486, but performance was

satisfactory on the 286 models.

Thesis Oraanization

Chapter II is a review of specific SPARTAN combat

processes and a comparison of them to processes modeled in

JANUS and CASTFOREM. Chapter III is a review of the

methodology I employed in formulating, building, and coding

SPARTAN. Chapter IV covers the specific algorithms and

logic I employed in SPARTAN's combat processes. Chapter V

summarizes my efforts and offers recommendations for future

SPARTAN improvements. Appendix A ii a MATHCAD 2.5 template

used for computing threshold observer-target probabilities.

Appendix B is a MATHCAD 2.5 template used for computing the

probability of acquisition tables. Appendix C is a MATHCAD

2.5 template for computing the probability of hit for the

M16A2. It also includes raw accuracy data for all weapons

used in SPARTAN and the appropriate probability of hit

tables. Appendix D is the user's guide. Appendix E is a

listing of computer code for the preprocessor. Appendix F

ins a listing of computer code for the simulation.

15

II. SPARTAN and Cmbat Modelina Review

Introduction

The purpose of this chapter is to review the techniques

and methodology used in the original SPARTAN and compare and

contrast them to techniques used in current high resolution

land combat models. The first section reviews background

information about SPARTAN and the two premier Army high

resolution models, JANUS and CASTVOREM. The following

section discusses the general composition of SPARTAN. The

third section concentrates on the combat processes that

SPARTAN initially covered, and the combat processes that I

added. The last section reviews SPARTAN simulation output.

SPARTAN Background Information

SPARTAN is a high resolution land combat model designed

to demonstrate current modeling techniques. It is

"primarily a small scale direct fire attrition model under

the definitions of the Army Model Improvement Program"

(5:13). Using the definitions provided in the Catalg.

Maraamina and Military Simulations and Models (16:Al-A22),

SPARTAN is a high resolution, two-sided, force-on-force,

stochastic, event sequenced simulation model of a direct

fire conflict. I will go into detail what these terms mean

later in this chapter.

SPARTAN was developed because of the lack of a suitable

model to train analysts who would be working with high

1.6

resolution combat models in the Army. CPT Dave Cox, an Army

student at the Air Force Institute of Technology, built

SPARTAN from the ground up in 1991-1992 at the request of

MAJ Garambone, the AFIT land combat modeling instructor.

With refinement, the model was for use at AlIT's Land Combat

Modeling course.

Parent Models

SPARTAN was designed to demonstrate basic combat

modeling procedures like those used in the Army's premier

high resolution land combat models, JANUS and the Combined

Arms and Support Task Force Evaluation Model (CASTFOREH)

(5:95). The proponent for both of these models is the

Army's Training and Doctrine Command Analysis Center-Wbite

Sands Missile Range (TRAC-WSMR), based at White Sands

Missile Range, New Mexico (14: C1,J4). TRAC uses these two

models for doctrinal and force-structure evaluation and for

training and education at the brigade and battalion level.

TRAC developed CASTFOREM at White Sands Missile Range

in 1983 and has continued to update it (14:C-11). CASTFOREM

is a "high resolution, two-sided, force-on-force,

stochastic, event sequenced, systemic simulation model of a

combined arms conflict" (7r1-2). TRAC uses it primarily for

analysis of tactics and force structure. CASTFOREM models

all types of direct fire, helicopters, dismounted infantry,

artillery, engineering operations, logistics, combat service

support operations, communications, maneuver, detailed

17

/

search and acquisition and realistic battlefield conditions

(7:2-3). The model is non-interactive; once initial data

has been input to the computer, there is no requirement for

human decisions as inputs. The entities in the model have

their own characteristics and select their own actions using

decision tables.

The Conflict Simulation Laboratory at Lawrence

Livermore National Laboratory developed JANUS in 1978.

Lawrence Livermore and TRAC have developed several versions,

four of which are still in use (14:J-3). JANUS(T) is

similar to CASTFOREH in resolution and methodologies, except

that it is interactive. In the interactive mode, JANUS(T)

requires that human decisions be input during conflict

evaluations. This mode is the one employed for training

brigade and battalion staffs.

SPARTAN Hardware/Software Reauirements

One of CPT Cox's original goals in developing SPARTAN

"was to provide a structured program code that would be easy

to understand and enhance as desired" (5:66). He looked at

several languages including C+ and FORTRAN and elected to

use QuickBASIC 4.5. He did this for several reasons. One

reason was that QuickBASIC is relatively easy to understand.

It is similar to FORTRAN in format an logic, and its editor

and this simple format make it almost idiot proof.

QuickBASIC also supports modular programming and has a good

graphics capability. This eliminated the need for a

18 ..

//
SI o

translator or graphics program to graphically represent the

simulation. QuickBASIC also has the ability to make

executable files that do not require compilation in order to

run.

Writing SPARTAN in QuickBASIC made it possible for CPT

Cox to meet another goal, that of making SPARTAN portable

(5:67). SPARTAN can be run on any IBM or IBM clone with DOS

3.3 or better. This makes it possible for users of SPARTAN

to take the uncompiled version with them and make

improvements or modifications as they desire. This also

improves its usability because users do not have to have

access to a specialized or super computer to use SPARTAN.

In addition to QuickBASIC, CPT Cox used MATHCAD 2.5 to

make templates for computing probability of acquisition,

probability of detection, and probability of hit tables.
'\ /

SPARTAN Doctimentation ,

The documentation provided with SPARTAn! served two

audiences (5:63). One audience was the student who is

expected to operate the model and learn about modeling. The

user's manual and on-line help files were provided for this

audience. The other audience was the person who wanted to

get involved in SPARTAN code and modify it. CPT Cox's

thesis was provided for this audience.

There was a trade-off in level of detail versus

conciseness in the user's guide and the help files (5:63).

CPT Cox strove to limit the size of the manual, but based on

19

S/ / "

user input, he added detail to the on-line help (5:64). His

user* s manual is 14 pages long and provides both a general

outline of model processes and explanations about why the

model does what it does. The manual also explains how

terrain and entities are represented. The on-line help

screen provides information similar to the manual except

that more detail is provided about model processes.

SPARTAN Verification and Validation

Verification is the process of ensuring that model

components are functioning as intended (19:11). The modular

format of SPARTAN aided CPT Cox in carrying out model

verification. He was able to check processes out in detail7

bef ore adding them to his model (5:55). According to Cox,

"a typical improvement cycle involved creating a simple

subprogram and having it print out all the data values it

required" (5:55). By doing this, he was able to verify that

subprograms were functioning correctly.

Validation is the process of ensuring that model

results are correct (19:11). This was difficult for CPT Cox

because his data was totally made up in order to provide

reasonable representation of combat processes (5:95). CPT

Cox did, however, institute a three level assessment

process. CPT Cox evaluated the model, the thesis advisors

evaluated the model, and, lastly, CPT Cox used "blind

testing" (5:62). Blind testing means tha~t the simulation

and supporting documentation are given to a test user with

20

no additional instructions (9:1-37). Testers were asked to

provide feedback to CPT Cox regarding the suitability of the

model for its purpose and about the documentation. Blind

tests were conducted in two phases, with additions and

modifications to the model and documentation occurring after

each test.

SPARTAN Classification

There are several ways to classify models and

simulations. one way to classify models is by purpose.

Another way to classify them is by qualities of the model,

such as the scope of the conflict or the level of detail of

processes (1:3). A third way to classify models in by the

type of construction. This includes the amount of human

participation, method of time advancement and other design

criteria. This section will classify SPARTAN by all of

these methods.

Classification by Purpose. As was stated in Chapter 1,

the military uses models for (4:6):

1) Technical evaluation

2) Doctrinal evaluation

3) Force-structure evaluation

4) Analysis of military and diplomatic factors and
international relations

5) Training and education

6) Development of research methodology

These categories can be divided into the two broad

categories of analysis and training and education.

21

Models designed for analysis are typically those used

for research and evaluation tools (such as engineering

models) or for operations support tools (decision aids)

(1:3). Typically these types of simulations are run many

times to get mean expected outcomes and confidence intervals

for results. Also typically, such models require little or

no human interaction once the model begins a simulation run,

this ensures model inputs are constant across runs.

CASTFOREM and some versions of JANUS are analytic models

(14:C1,J1-J4).

Models designed for training and education can be

subdivided into two categories: skills development and

exercise drivers (1:5). Skills development models and

simulations develop individual and team skills. An example

of this type of simulation is the Observed Fire Trainer for

Bradley Infantry Fighting Vehicle or M1 tank crews.

Exercise drivers are combat simulations that resolve battles

based on inputs provided by the target commanders and

staffs. They frequently allow real time interaction and

"create some of the stress, confusion, and time pressure of

battle along with the simulated combat scenario" (13:14).

In actuality, they can be thought of as "group skills"

development models. JANUS is a training model.

The original SPARTAN lies somewhere between both of

these classifications. It was designed along the lines of

an analytic model and is used as a skills developer. It

demonstrates the form and function of an analytic model ¶

22

without the output of such a modcl. It does not support any

training, other than skills development of military

analysts.

Classification by Model Qualities. Model qualities can

be thought of as the real entities and processes that the

model represents (1:7). Qualities include the physical

space in which entities and processes operate and the

categories of weapons that the model represents. Another

quality is the level of detail of processes and entities.

Both JANUS and CASTFOREM operate in a three dimensional

battlefield. They represent both ground and air conflict.

They also both represent combined arms task forces. A

combined arms task force is a battalion (infantry or armor)

that has been augmented with other types of forces. A

battalion could number over 1200 men, 60 armored fighting

vehicles, 200 support and logistics vehicles and aircraft.

Thus, JANUS and CASTFOREM model tanks, infantry fighting

vehicles (IFVs), artillery, close air (to a limited extent),

infantry, military intelligence, air defense artillery,

engineers and other elements (7:1-3,8:A1-A4). The mission

area of both of these models is the close fight between

battalion or brigade sized units. Both JANUS and CASTFOREM

model processes and entities at the individual weapons

system level. That is, they model individual tanks, IFVs,

and dismounted soldiers.

SPARTAN also operates in a three dimensional

battlefield, but only ground conflict is represented. In

23

fact, SPARTAN models only dismounted infantry engagements.

The only weapons that SPARTAN models are direct fire

semiautomatic rifles. There are four types of weapons,

differentiated by their accuracy at different ranges. The

mission area for SPARTAN is the close fight between squad

sized (approximately 6-9 men) elements.

Another quality that can be used to classify Models is

the environment. The environment of the model is the state

of the physical system in which the model operates.

Environment includes terrain, weather, light (day/night),

built-up areas and sea states (1:7). CASTFORL14 models

terrain and vegetation, static weather (does not change

throughout the battle), dynamic obscurants like smoke and

dust, and chemical contaminants (7:1). JANUS also plays

these systems (8:1-50). SPARTAN's environment is simple, it

models only terrain and does not represent effects from

weather, obscurants, buildings, temperature, ambient light

levels, electric warfare, or Nuclear, Biological or Chemical

effects.

Force composition is another quality of models that can

be used to classify them. Force composition is the mix of

forces that is portrayed by the model. As was stated above,

both JANUS and CASTFOREI4 model combined arms task forces,
either battalion or brigade sized. The number of entities

and systems this represents is enormous. SPARTAN attempts

only a limited number of entities. It only allows a maximum

of 12 soldiers (combined total from both sides). No

24

headquarters are modeled, although one soldier on either

side can be designated as squad leader.

To model these entities, CPT Cox used 17 attributes (5:47):

Table 1 Attributes of SPARTAN's Entities

ATTRIUT SoldI cN
1 Soldier's current horizontal coordinate
2 Soldier's current vertical coordinate

3 Soldier's current elevation
4 Soldier's last horizontal coordinate
5 Soldier's last vertical coordinate
6 Soldier's height
7 Soldier's speed (not adjusted for posture)
8 Soldier's current direction of travel
9 Soldier's move status (moving/not moving)

10 Soldier's weapon type
11 Soldier's current ammunition count
12 Soldier's current wound status
13 Soldier's posture
14 Squad leader marker
15 Soldier's original attack direction
16 Next target to engage
17 Side (RED/BLUE)

Classification by Construction. Another way to

classify models is by model construction. Construction

refers to the design of the model (1:9). Elements of

construction include the amount and type of human

interaction, how the model handles time processing, how the

model represents randomness, and the sidedness of the model.

H~a participation is the extent "to which human

presenseis allowed or required to influence the operation

of the uodel" (1:9). CASTFOREH and JANUS(T) differ in this

respect. Once CASTFOREM has begun a model run, no human

input is required. CASTFOREM has an expert system that uses

decision tables, based on the input scenario, to make all

25

required battlefield decisions (7:2,18-23). JINUS(T) does

not have an expert system; human participation is required

to make decisions when the model is used as a training tool.

SPARTAN resembles CASTFOREM in that no human participation

is required (or allowed) once model runs begin.

Another design quality is how the model treats time.

There are two basic types of time processing, static and

dynamic. Static models do not consider changes to the

system as a function of time and thus do not represent time

(14:A-7). Dynamic models, on the other hand, explicitly

model the impact of time on system state changes.

CASTFOREM, JANUS and SPARTAN are all dynamic models.

Dynamic models can further be broken down into time

step, event step, or closed form solution models (1:9).

Neither JANUS, CASTFOREM, or SPARTAN are closed form models,

which are models in the form of a set of differential

equations which have a closed form solution (14:A-7). Most

high resolution combat models are either time step or event

step models. In time step models, the model time keeping

system advances at a set discrete amount. At each time

change, the states of the sy&tem are updated based on the

new time (1:7,13:2-6). In event step modeling, as the model

finishes an activity, it checks to see what the next

scheduled event is. The model checks the time of that

scheduled event and advances the model clock to that time

(14:A-7,13:1-3,2-1). There are also hybrid time advance

mechanisms, where the model clock slows to match real time

26

advancement. SPARTAN, CASTFOREM, and JANUS are all event

step models, although CASTFOREM does allow time step

processing in some cases (14:CI).

Another aspect of model construction is how the model

treats randomness. This is important to combat models

because what is normally called the fog of war is actually

the uncertainty of battle because of random outcomes to

events on the battlefield (usually because of human

decisions) and a lack of perfect information. There are two

basic approaches to treating randomness, models either

ignore it, or consider it in some manner (14:A-10).

Deterministic models ignore randomness. Some processes do

not have randomness, in which case solving them

deterministically makes sense. Most military processes are

stochastic, not deterministic, however, and models must deal

with this property. Some models (expected value models) try

to do this deterministically, they ignore "the inherent

randomness in the stochastic processes by replacing all

random variables with deterministic quantities (the expected

outcome) of the process" (14:A9).

Most high resolution combat models use one of two ways

(or a combination thereof) to treat the stochastic nature of

combat. One method is known as the Monte Carlo method -,, ',

(defined in Chapter I) (1:2-46;14:A-10). The other possible

way to determine the outcome is to calculate the results

directly. This may give more accurate results, but can be

costly in terms of computational time. JANUS and CASTFOREM

27

use both the Monte Carlo method and the direct computational

method in different parts of the programs.

SPARTAN treats probabilitieo of acquisition, detection,

hit, results of a hit, reaction to fire, and time till the

nezt event using the Monte Carlo method and a Uniform (0,1)

random number. Line of Sight is deterministically computed.

Another way to classify models by construction is by

sidedness. A side in a combat model is a collection of

entities and resources used in cooperation to achieve a

common goal (14:A-15). CASTFOREM; JANUS, and SPARTAN are

all two-sided models. They all have two sides that are in

conflict with each other. All three models are also

symmetric, both sides in the models having the same relative

resources and the ability to employ them to some varying

degree of effectiveness.

SPARTAN's Scenario

The scenario is one of the most important aspects of

the simulation. It establishes the environment of the

conflict, the terrain aspects, the force composition, the

systems played and the tactics involved. SPARTAN requires

no written scenario, mainly because the user establishes the

scenario when he runs the start-up program. In SPARTAN the

scenario includds terrain elevation and mobility, number of

red or blue soldiers, position, direction of movement,

weapon type, speed, posture or any other soldier attributes

2/

the user might alter. The user can alco establish the

initial events the model will execute.

Data Base Information

The Data Base information required for SPARTAN is very

small. SPARTAN requires only six look-up tables. There is

a probability of acquisition table (based on observer-target

range and target posture), a probability of detection table

(based on observer-target range, target posture, and time

duration of observation), and four probability of hit tables

(based on weapon type, range, and target posture). These

tables are not accessible to SPARTAN users and the only way

to change them is to reconstruct Cox's method of calculating

them and recompute them.

Terrain Functions

The level of detail in modeling terrain should be

consistent with the level of detail of the processes that

the model replicates (13:1-12). In line with this fact,

both JANUS and CASTFOREZ model terrain in great detail.

Their terrain is digitized and has the attributes of

trafficability, elevation, and clutter (representing

vegetation), and includes such features as rivers. SPARTAN,

however, was not intended to offer such detail, but rather

offar a broad outline of what high resolution combat models

do. Therefore SPARTAN only represents elevation and

Moi~ility.

29

All three models use a grid terrain model to represent

terrain. In a grid terrain model, a grid of regular

polygonal grid cells is overlaid across the battlefield.

Each of these cells has its own attributes such as clutter

factor, elevation, and trafficability factors (13:3-1,3-5).

CASTFOREM usually uses 100m squares with uniform attributes

throughout the square (7:13), although squares can be

altered in size depending on the scenario. JANUS also uses

squares (again size can vary)(8:33). In JANUS(T),

attributes apply uniformly through each square except for

tb: elevation. The elevation attribute marks the lower left

corner of each square, elevation changes proportionally to

the distance moved from the marking corner and towards the

marking corners of neighboring squares.

SPARTAN divides its one Kilometer square battlefield

into 2500 squares that are 20 meters on a side. Elevation

and mobility factors are uniform throughout each square.

Only the mobility factor has an impact on movement, soldiers

do not slow for changes in slope. Elevation affects line of

sight and thus, target detection and engagement.

Combat Processes

The Army's FM 100-5 OPERATIONS has broken the

battlefield elements into seven battlefield operating

systems (BOS). These are:

1 Maneuver

2) Fire Support

30

3) Air Defense

4) Mobility/Countermobility/Survivability

5) Combat Service Support

6) Intelligence/Electronic warfare

7) Command and Control

The BOS all support one or more of the fundamentals of

combat, "shoot, move, and communicate". Models that

replicate combat must simulate one or more of these

fundamentals. These fundamentals are usually modeled by K
/

further breaking them down into multiple components known as

combat processes. The original SPARTAN replicated the

following combat processes:

1) Movement

2) Target Search

3) Target Selection

4) Direct Fire Engagement

5) Command and Control

Movement. Although movement is in reality a continuous

function, most high resolution models represent it through a

continuous series of discrete steps. Both JANUS and

CASTFOREM model movement this way. In both models movement

is affected by entity attributes such as speed, posture, and

mobility and by terrain attributes such as trafficability,

vegetation, and slope. Both models also use maneuver

control points (8:277,7:140). Prior to model runs (or, for

JANUS(T), during model execution), routes are selected for

entities and maneuver control points designated along these

31

- A.., . I,

1~' - ./

routes to control movement. Entities then move from point

to point along the route.* JANUS(T) attempts to move

entities 50 meters per move (modified by terrain and

obstacles). It then computes the time that the move would

have taken, and schedules the next move for that entity at

that time (8:411-412). CASTFOREM also attempts to move

entities set distances, but it is not locked into a set

sequence of movement control points. It uses the Dykstra

"shortest Path" algorithm to compute routes (7:142).

CASTFOREM can also adjust speed to maintain formation within

units.

CPT Cox also designed SPARTAN to represent movement in

discrete steps. SPARTAN's movements were in 20 meter

increments, with the new location being computed by the

equations below (5:70):

xn&eW-xold+2OxCOS(DIR) (1)

ynzv-yold+2OxSIN(DIR) (2)

Where DIR is the attribute of each soldier that denotes

direction of travel.

CPT Cox used a method similar to that of JANUS by

making the time to move to the new position a random

variable. His computation of movement time involved the

speed of the soldiers (fixed at 20 meters per move), the

mobility factor of the terrain cell in which the soldier

started his move, and the soldier's posture. Equation (3)

shows his move time calculation (5:72).

32

- //

/ j" ,• '. / ,/ -j... .

/.

jVOVet1MO- !O+ PJW(O, 1) x100 (3) /

JPOV. e pedxmabfACro rxposture 3

SPARTAN used two different routines to control

movement. In the aubroutine STARTMOVE, SPARTAN checked to

make sure the solcier was in a move status. If not, thc

subroutine ended and the next event on the event schedule

was called. If the soldier was in a move status, the new

position was computed, the graphics updated, and the time to

complete the move computed. Then a call to the subroutine

ENDMOVE was scheduled. At ENDMOVE, a random variable from a

triangular distzibution was used to determine the time to

the next STARTMOVE. A STARTMOVE was then scheduled for that

time (5:69-74).

CPT Cox acknowledged the following limitations inherent

in the low level of detail in his movement process

(5:72-74):

1) Entities move and stop in discrete steps rather
than move continuously.

2) Entities do not have the option of moving less than
20 meters, regardless of the situation.

3) Terrain slope does not affect movement. (This is a \
realistic assumption given the tactical situation
and the nature of the entities.)

4) The mobility factor of the move is constant
throughout the move, regardless of whether or not
it changed.

5) Entity posture does not change after ENDMOVE and
before STARTMOVE.

6) Soldier fatigue is not a factor (A realistic
assumption in light of the short battle duration).

7) Movement is scaled for screen graphics.

33

Sf ~ / "'1 ... ,

8) Pasture changes are instantaneous and do not affect

a move in progress.

Taraet Search. Target search is one of the most

important and most difficult aspects of combat to model. It

includes aspects of acquisition and detection. Detection is

defined as the "event constituted by the observer's becoming

aware of the presence and possibly of the position and even

in some cases the motion of the target" (13:4-1). There are

several levels of target acquisition within the above,

definition of detection. These are (13:4-1-4-2):

1) Cuing information. This provides the observer,
the approximate location for further search.

2) Detection. The observer decides that an
object in his field has military interest.

3) Classification. The observer is able to
distinguish broad target categories.

4) Recognition. The observer is able to discriminate
between finer classes of targets.

5) Identification. The observer precisely identifies
the target.

When attempting to model target'-acquisition and

detection, two significant characteristics about detection

must be taken into account. First, three physical

conditions must exist: the observer must have line-of-sight

to the target (there must be no obstructions blocking his

view of the target), the target must have a physical

*signature that the observer can detect, and the observer

must be looking in the right direction. The second

.characteristic is that even if all three physical conditions

exist, there is no guarantee that the observer will detect

34

-- Z

the target (13:4-3). Thus, search processes involve checks

for line of sight, checks to see if the target offers a

distinguishable signature, and checks to see if the observer

is looking at the target long enough to acquire it.

Line of Sicht. Line of sight (LOS) refers to

observer having an unobstructed view of the target. LOS can

be blocked by intervening terrain or vegetation. It

generally "considers only the major land forms of the

terrain along with major vegetation" (13:3-3). In general,

LOS checks consist of determining the line between the

observers eye and some target height. Checks are made along

this line to determine if terrain or vegetation blocks it

(13:3-4).

Both JANUS and CASTFOREM determine line of sight

deterministically. In JANUS(T), the range from observer to

target is determined. The range is then divided by the

largest dimension (called d) of the uniform sized terrain

polygon. This result gives the number of terrain elevation

checks that JANUS conducts. The line of sight is then

checked every d distance. If the terrain does not block the

LOS, JANUS checks vegetation factors and degrades the LOS by

a percentage. If the remaining percentage does not fall

below some threshold, LOS exists (8:348-351). CASTFOREM

measuz's LOS differently than JANUS. It does not measure

straight LOS. Its LOS moves along vertical or horizontal

axes (like a step function). "This method is faster than

the traditional straight line methodo'agy and has been shown

35

/.

to statistically agree with it, when the grid square

resolution is at least 50 meters per side" (7:6).

SPARTAN's method of LOS checks is much like that of

JANUS. SPARTAN determines the equation of the line between

the eye of the observer and the top of the target. Terrain

elevation is then checked every 10 meters along this line to

see if the LOS is blocked. Partial obscuration is not

counted, if the top of the target's head can be seen, then

the whole target is counted as being seen (5:75-77). Since

vegetation is not modeled, it has no impact on LOS. The

disadvantage to this method is that it is possible for the

observer-target line to cross part of an intervening terrain

cell with blocking elevation and not fail LOS, because this

terrain cell falls between 10 meter checks.

Taraet Acauisition. If LOS exists between

observer and target, the model must determine if the

observer detects the target. Both JANUS and CASTFOREM model

target acquisition/detection using the Night Vision

Electro-Optical Laboratory (NVEOL) detection model. The

algorithms used in the NVEOL model take into account target

dimensions, observer-target range, target-background

contrast, sky-ground brightness ratio, and visual

attenuation caused by atmospheric conditions (8:352-365).

The drawback to the NVEOL model is that the data for it was

based on stationary observers looking at nonfiring

stationary targets. Therefore heuristics must be used to

deal with targets that are shooting or moving and observers

36

7 " -• -, ----

that are moving. Also, the NVEOL model deals only with

randomly selected observer-target pairs (17:26).

The NVEOL model is based on the idea of how many

resolvable cycles an observer can detect on a potential

target. A cycle is a pattern of light and dark bars of the

same width of the minimum dimension of the target. The

contrast of the light and dark bars is the same as the

contrast of the target and its background (17:25). Using

the ratio of number of cycles the observer can detect to

some threshold level for level of detection, NVEOL computes

the probability of detection.

The first step of the NVEOL model is the computation of

the attenuated contrast. This is the apparent

target-background contrast, after sky-ground brightness and

atmospheric attenuation has been computed (17:25).

attenuatedcont.raat- targ*tcontzaet (4)

800= Sky-ground brightness = 2.5 on a bright day
vis = atmospheric attenuation coefficient
range = observer-target range in kilometers
target contrast = .2--.3 for visual targets

The attenuated contrast is then applied to a sixth degree

polynomial (in natural log) and multiplied by the width of

the target in milliradians (width of target in meters

divided by range in kilometers). This result is the number

of cycles the observer is able to detect across the target

(8:352-365).

37

The probability of detection in NVEOL is based on two

probabilities: the probability that the observer will detect

the target given unlimited time (called Pinf or P1) and the

probability that detection is made at some time given the

target is detectable and the observer is looking at the

target (called Pfov or P2) (8:352-365). The calculation for

P1 is (17:26-27)

P 1+T- R (5)

where TERM H cycle ratio ^power
cycle ratio cycles resolved by observer

cycles for 50
power = 2.7 + .7 * cycle ratio

Cycles for 50 is defined as the number of cycles

required for 50% of the population to detect the target.

Cycles for 50 for various detection levels are listed below

(17:27):

Simple detection: 1 - 2
Recognition: 3 - 5
Classification: 6

The equation for P2 is (17:26)

P2.1-e-Axb z (6)

k a constant a 1/6.8
t z the time spent looking at some particular

field of view.

The overall probability of detection is a function of

P1 and P2

Pz (DBTM -P.1xP2 (7)

38

Both JANUS and CASTFOREH use the NVEOL model in similar

fashions. During model start-up, every observer-target pair

is assigned a random threshold P1 level (8:352-365). This

has the affect of making the possibility of detection random

(some observers need to see more of a target than otbers

before they can detect it and observers will need to see

different amounts of the same types of targets to detect

them). TheL, as target detection/acquisition routines are

employed, P1 is computed deterministically for each target

in the observer's search field. This is compared against

the threshold level. If his P1 is larger than the

threshold, a random search time for the field of view

containing the target is drawn and P2 is determined.

P2 is determined by the field of search and by the

random time spent in each part of the field of search.

CASTFOREM always conducts searches of 360 degrees. JANUS

uses a full 360 degree search when entities are moving, but

the field is cut to 180 degrees when the entity stops. Once

P2 is determined, the overall P(detection) is computed. A

random number draw then decides the success or failure ýf

detection (8:352-365;7:7). Once a target is detected, •oth

JANUS and CASTFOREH retain it on the potential target li, t

unless the observer loses line of sight.

CPT Cox employed a simplified version of the NVEOL

model in SPARTAN. His method was proposed by Bailey, a

contractor hired to simplify the search routines of JANUS

and CASTFOREM (5:79). The proposed routine was never

39

implemented. Bailey's algorithm also employs two

probabilities: one probability (P1) is the probability of

eventual detection given unlimited observation time (5:79)

and the other probability (P2) is the probability of

detection given the observer is looking at a certain field

of view for some random time (5:82).

(8)

where C target height/range to target
4 l= 3.5
-.!84 is a scaling factor added since no empirical
data was used on the sensory capabilities for
human eyesight.

where C and M are the same as above

t is a random variable ranging from (.4 -4)

CPT Cox used MATHCAD to prepare a table for each

probability based on target posture and in ranges of 100

increments. The table for P2 also moves time in increments

of .4 time units.

When SPARTAN called a search routine, the P1 for the

target range and posture was obtained from the table and

compared to an arbitrary threshold of .2. If it was

possible for the observer to detect the target signature, a

random time was drawn (between .4 and 4 time units) and a P2

drawn from the table. A Mont. Carlo trial then determined

if the target was to be added to the potential target list.

CPT Cox 's search process was memoryless. Each time the

40

k. , , .

N.N6

entity went to the search routine, it was as if the entity

had never detected anyone, so his potential target list was

empty. SPARTAN's search replicated a Lull 360 degree field

of search. Also like JANUS and CASTFOREH, SPARTAN only

sought to identify foes, friendly soldiers were not searched

for and identified (therefor there was no fratricide

replication).

Taraet Selection. Once an entity has detected a
S \ /

potential target, it must decide whether or not to engage

that target and with what weapon. If more than one target

is detected, then the entity must choose which target or

targets to engage. This is the purpose of target selection.

The problem with target selection is that there is "no basic

seminal theory" telling how to accomplish it (13:6-1). One

way to model target selection is the DYNTACS adjusted range

formula (13:6-3). In this method, targets are weighted by

their attributes, recent actions such as whether the target

has fired recently, whether the target is ruder fire from

another friendly zlement and whether the target was in the

observer's sector of responsibility. Another method is for

target selection to be decided by user input priorities

(13:6-4).

JANUS and CASTFOREH use dissimilar algorithms for

target selection. CASTFOREM uses a method similar to the

DYNTACS formula (7:11). JANUS(T) selects targets based on

the Single Shot Probability of Kill (SSPK). Tho first step

in the JANUS process is a check to make sure the target is

41

within range of the primary weapon ste.If the target is

within range, the observer cheuks remaining anmmunition of

his primary weapon. If he is out of ammunition, he attempts

.target selection based on hi3 secondary weapons system.

Once the type of weapon has been decided, the 3SPK of all

targets acquired by the observer is determined. The' SSPK is

based, on range, movement status of both target and observer

and protection factor of target. If the SSPK is larger than

a threshold level of .05, target engagement begins

(8:371-372).

SPARTAN uses a method similar to JANUS. Once an entity

has completed a search cycle and has one or more potential

targets, the SELECT subroutine is scheduled. in the select

subroutine, all the P2 values for acquisition are summed up.

If the sum is greater than an arbitrary value of .2,

selection continues. If not, a search is scheduled. If

selection continues, the P2 values are normalized so they

sum to one. A random number is then drawn to determine

which target the observer will engage and an engagement is

scheduled. This target is then carried as an attribute on

the observer's attribute list (5:83-85).

Cox's use of probability of detection to determine

target selection intuitively seems to make sense in the

absence of rules of engagement, target priorities or sectors

of fire. Although he did not modify target detection based

on signatures (such as firing or movement), it seems logical

to engage the target that attracted most of the shooter's attention.

42

Taraet Enaaaem•'nt. There are two basic types of

engagement: direct fire and indirect fire. In direct fire

engagements, observers have line of sight to their targets

and aim directly at them. In indirect fire engagements,

gunners dc not have a view of the target and are aiming at

some coordinates, usually forwarded to them by someone who

has acquired the target either visually or by electronic

means.

Direct Fire. All direct fire engagements are

modeled in much thb same manner. Before firing, the

observer checks to see if LOS to his target still exists.

If LOS exists, the model performs a Monte Carlo experiment

to see if the shot (or shots) hit or miss the tnrget. In

JANUS, the SSPR determines whether or not the round impacts.

CASTFOREM uses "a normal bivariate distribution with a bias

off the aimpoint and dispersion" and draws a random impact

point to determine whether the round hits the target (5:19).

When SPARTAN's direct fire subroutine is called, it

first checks to see if LOS still exists. If LOS exists, the

entity is checked for ammunition. If he has ammunition, the

ammunition count is decremented by one and a look up table

is accessed for tho probability of hit for the target range,

posture and weapon type (5:83-87).

Cox used the equation below to calculate his P(hit)
(5:87).

Sr(j t)(1-e (10)

43

where R 2 -X2+y2

var = aim and ballistic error of round in both x
and y directions.

This formula assumes a circular target and does not

take target aspect angle into account. The P(hit) tables

were adjusted for target postures by adjusting R by a

percentage based on whether the target was prone or

crouching.

Once the P(hit) was determined, a random Uniform(0,1)

variable was drawn to determine whether the round hit or

not.

Indirect Fire. Indirect fire is more complicated

than direct fire because artillery is an area effects

weapon, not a point effects weapon (excluding guided rounds

like Copperhead). P(hit) is based on number of rounds

fired, center of impact of rounds (center of sheaf), size

and aspect of sheaf, type of rounds (high explosive or

Improved Conventional Munitions), point of detonation (air,

ground, below ground) and protection factor of target.

JANUS incorporates the following into calculating

P(hit) of artillery (8:378):

1) Round to round ballistic errors.

2) Artillery formation and distance between firing
unit elements.

3) Parallel or convergi g sheaf.

When all rounds' impacts have been located, JANUS

determines a maximum effects box based on the imaginary box

44

/ "

that contains all the rounds, plus an added factor based on

distance determined by target protection factor. In

addition, a suppression box is drawn 200 meters around the

effects box (8:378). CASTFOREM determines indirect fire

engagement results much the same way (6:104-113).

The original SPARTAN does not model indirect fire

engagements.

Impact Assessment. if the result of an engagement is

determined to be a hit, then an assessment of the damage

must be accomplished. Lethality models used in high

resolution combat simulations, simulate each round

individually (13:8-1). In some cases, such as when the

weapon is a machine gun, this round is actually a burst of

several individual bullets. Machine guns and automatic

cannon are modeled like this because the extreme resolution

needed to model each bullet separately "would be prohibitive

for most force on force modelling purposes" (13:9-1).

There are basically two types of projectiles: impact

projectiles, which must hit a target to cause damage, and

fragmenting projectiles, which explode and cause damage

either by the explosion or by fragments (13:8-1).

For impact projectiles, a Bernoulli trial is compared

to the SSPK to determine the level of damage to the target.

In JANUS, elements of the target are either killed or not.

CASTFOREM is a bit more detailed, computing the exact point

of impact and determining the level of damage, either

45

firepower kill, mobility kill, mobility and firepower kill,

or catastrophic kill (7:148).

Given that the round is a hit, SPARTAN uses a Uniform

(0,1) random variable to determine if the target was killed

or wounded. Targets have a 30% chance of being killed and a

70% chance of being wounded. Wounds are not cumulative;

being wounded does not increase the target's chance of being

killed if hit again. Also, the target's posture and move

status do not change upon being wounded.

There are two different methods of calculating damage

from fragmenting projectiles: the cookie cutter method and

~.he Carleton damage function. JANUS can use either method

(8:378-379). CASTFOREI4 uses the Carleton function (7:150).

The cookie cutter method makes use of the fragment

sheaf discussed above. This sheaf is a function Of sheaf

spread, round burst radius, and impact dispersion. if the

target is determined to be outside of the sheaf, then no

damage is assessed.

The Carleton function computes P(hit) as a function of

the rati o of the miss area divided by the bursting area

(7:151, 17:78).

A Bernoulli trial then decides whether the target is hit.

React to Fire. When a target is taken under fire, and

detects that it is under fire, it will normally take some

action. This action could be to seek cover from the fire,

46

move to evade the fire, attempt to locate the source of the

fire and fire back, or attempt to fire in the perceived

direction of the fire and suppress the attacker. This is

known as reaction to fire.

Regardless of the reaction, the effect of fire is

suppression. This means that the target under fire suffers

some degradation of performance because of its actions as a

result of fire. JANUS only models suppression as a result

of indirect fire. The effects are that the target can move,

but not shoot. CASTFOREM models suppression and reaction to

fire for both direct and indirect fire. If the target has

sustained less than a catastrophic kill, decision tables

decide the appropriate action for the survivors to take

(7:150).

SPARTAN models suppression by giving targets three

possible reactions to receiving fire. The target has 40%

chance of moving to a prone position and slowing his speed.

This models suppression as the prone posture inhibits

acquisition. The entity also has a 20% chance of reversing

directions and moving 20 meters. Finally, the target has a

40% chance of ignoring the fire (5:91-92).

Command and Control. Commnand and control is the

ability of the decision makers in the model to influence the

battle. CASTFOREM, being non-interactive, models command

and control through myriads of decision tables and some

expert logic. Based on changing situations the model checks

the decision tables and alters instructions to subordinate

47

entities (7:17-42). JANUS, being interactive, does not'

model command and control, depending an the players to make

decisions.

SPARTAN has a limited conmmand and control function.

One entity on either side can be designated as squad leader.

If a squad leader is designated, all other entities on his

side will reorient to engage targets that he engages. If he

dies, then the other entities reorient on their original

direction of movement (5:91).

The type of output desired from the model should drive

model design. Simulations designed for training should

provide output that provides some indication of the success

of the trainee in meeting performance measures of the task

on which he is being trained. Simulations for analysis

should produce output that facilitates the analysis being

conducted.

JANUS' postprocessor produces up to 11 reports. These

are (8:323-345):

1) Artillery Fire Report

2) Artillery Summary

3) Direct Fire Report

4) Coroner's Report

5) Killer Victim Scorecard

6) Heat and Chemical Casualties

7) Temperature and Workload Profiles

48

8) Minefields and Crossers

9) Engagement Range Analysis

10) Force Loss Analysis

11) Detections

Some of these are analyses of battle results which are left

over from JANUS' roots as an analytical tool and are of

limited value. The history files are useful for After

Action Reviews, as the training audience tries to see what

they did and when.

SPARTAN's output is very similar to JANUS'. At the end

of every model run, SPARTAN asks users if they desire to

review the four output files. The first file is a final

score card detailing start and end strengths, ammunition

remaining, number of hits on either side, and number of

wounded. The second output file is the final attribute list

for either side's soldiers. The third output file is the

final potential target table with final probability of

detection values. SPARTAN also produces a fourth, history,

file that lists event type, event time and event actor.

Summar

The original version of SPARTAN is a high resolution,

two sided, force-on-force, stochastic, event sequenced

simulation of dismounted infantry conflict. It models

movement, target search, target selection, target engagement

and some limited commnand and control processes. The

methodologies used to model these processes were derived

49

from those used in the current generation of high resolution

land combat models. On the whole, SPARTAN faithfully

represented current modeling methods, but there were some

areas that needed improvement. The next chapter discusses

how I planned to implement these improvements.

50

III. Model Development Process

Introduction

This chapter will describe the general model building

process used to create and refine SPARTAN. The first

section outlines the general methodology used in creating

SPARTAN. The next section defines the modeling problem,

model objectives, and some assumptions about the objectives.

This is followed by a discussion about model formulation

which specifically addresses SPARTAN's modeling environment

and model components. The next section is a discussion

about model development, focusing on creation of the data

base, event set management, model enrichment, treatment of

randomness, and development of instructional components.

The last section discusses SPARTAN's model assessment

processes.

Devel opment tMethodol 0ev

Although SPARTAN was already designed and coded, the

fact that I did not have access to the original uncompiled

programs and the numerous revisions to methodology and

ýchanges I made, make the SPARTAN essentially a new program.

SThe overall process required to build this new SPARTAN is

flowcharted in Figure 1.

The framework for simulation development applied to

SPARTAN was a combination of the simulation process

51

ILITERIATURE REVIEW AND ANALY8IS OF 8PARTANM J

I

CREATEI Iovol I .•/
017RUOTURq LANGUAGE/

IDETERMINE I/DEVELOPI
DATA MODEL6LNREMET81I ROUTINE8I PRPR

I fEU0REENENT8OJ

I 1--I
IN

WVELOPE D ;E rl

FiPgur~e 1 Model Development Process

described by Pritsker (19:11-12) and the conical methodology

described by Richard Nance (18:38-43). ...

Pritsker lists 10 stps of simulation development (see

Chapter 1), six of which were applicable for SPARTAN

development (19:11-12) :

1) Problem formulation. The definitien of the problem
to be studied, including a statement of the
problem-solving objective.

2) Model Building. The abstraction of the system into
mathematical -logical relationships in accordance
with the problem formulation.

3) Data Acquisition. The identification,
specification, and collection of data.

4) Model Translation. The preparation of the model
for computer processing.

5) Verification. The process of establishing that the
computer program executes as intended.

52

6) Validation. The process of establishing that at
desired accuracy or correspondence exists between
the simulation model and the real system.

The conical methodology essentially subdivides

Pritsker's steps one and two into substeps, more clearly

defining problem definition and model building. An

extracted outline of the conical methodology is presented in

Figure 2.

I. Statement of the study objective

A. Problem Statement
B. Objectives and assumptions about objectives

II. Modeling Environment

A. Modeling effort available/require.
B. Modeling Assumptions

1. Boundaries
2. Interaction with environment

III. Model Description

A. Identify the objects and their attributes

B. Submodels with possible sublevels

VI. Model Validation and Verification Procedures

A. Validation tests
B. Verification criteria and tests

V. Model experimentation

Figure 2 Conical Methodology Outline

Problem Definition

The first task of both model development methodologies

is a determination of the study problem and an "explicit

statement of the objectives of the analysis" (19:11). In

this instance, the problem was identified in Chapter II as

53

"to continue development of SPARTAN, and improv, its value

as an instructional tool for high resolution land combat

modeling courses"

Once the problem is clearly defined, the modeler must

decide on the objectives of the simulation. Having the

problem of continuing development of SPARTAN, I decided upon

the objectives enumerated in Chapter 1: portability,

simplicity, applicability, and useability.

Portability is the degree to which SPARTAN c an be

transferred from computer to computer. This means that-

SPARTAV must be small enough to be carried on a single disc

and written in code readily available to most users. Wit h

this objective in mind, I decided that SPARTAN must be

capable of running on all IBM XT compatible computers (5112K)

with EGA minimum graphics ability. For this reas on, SPAR TAN

was written in QuickEASIC, and complied into an executable

(*.exe) file.

Simplicity is the degree to which the workings of

SPARTAN can be readily followed and understood by the user.

This is mainly because the intended audience of SPARTAN is

the beginning combat modeler, who may have only limited

knowledge of combat prccesses or computers. For this

reason, the number of processes and entities involved in

SPARTAN was kept to a minimum. Also, simplicity eliminated

the necessity for excruciatingly detailed or extraordinarily

accurate replications of reality and allowed simplifying

assumptions about data and processes. The objective of

54

simplicity also allowed me to eliminate the option of human

input during simulation runs.

Applicability means that SPARTAN must accurately

portray processes like those found in the current generation

of high resolution land combat models. Given the

limitations in computing power caused by the first

objective, SPARTAN could not and did not need to completely

recreate JANUS and CASTFOREH. It did need to accurately

represent the techniques used by those models in such a way

that novice modelers could understand them.

Usability is a combination of the other three

objectives. Usability means that SPARTAN can meet its

intended function of teaching modelers about high resolution

land combat [modeling. The model must allow users to alter

inputs and conduct sensitivity analysis (as is done in

"real" models). SPARTAN also required extensive

documentation so that users can grasp what the model was

doing and how the model was doing it. The graphical

representation of model activities had to enhance, not

complicate, understanding of model processes. SPARTAN also

had to allow the user to query it about the current state of

the system. The model had to be capable of producing output

about the ending system state. Lastly, the model had to run

faster than real time so that replications could be easily

done.

55

ifi

Model Formulation

Having identified the problem and model objectives and

assumptions about #hose objectives, the next step of the

model building process was the formulation of the model.

This included identifying the modeling environment and the

model definitions and developing the model itself.

Modeling Environment. The first step of model

formulation is identifying the modeling environment. The

modeling environment includes the modeling effort and

modeling assumptions.

Modelina Effort. Assessing the modeling effort is

frequently the most overlooked and forgitten aspect of the

modeling environment. Because of the nature of SPARTAN's

intended purpose, this assessuient was not so much an

assessment of what meas':es of effectiveness SPARTAN was

required to produce, but rather an assessment of the time

limitation to finishing SPARTAN. SPARTAN was required to be

completed within 26 weeks.

Modelina Assumptions. This assessment, like th&t

of modeling effort, was an effort to more concretely

identify the limits of model construction and thus

facilitate model formulation. The list below is not

comprehensive, but does enumerate the major limiting

assumptions I made in formulating SPARTAN:

1) Model Type. Because SPARTAN is designed for
instructing land combat modeling students, not
training experienced soldiers, no interaction with
the simulation during model runs was required.
(The model is not a man-in-the-loop). For

56

this reason, SPARTAN was designed like a analytical
model, not a training model.

2) Model Domain. The model dom 4n is the "physical or
abstract space in which the tntities and processes
operate" (1:7). In keeping with the objective
of simplicity, I assumed SPARTAN's domain would be
land only.

3) Model Span. SPAN is the scale of the domain.
SPARTAN's domain is local (as opposed to global or
theater). The area modeled is a one square
kilometer area.

4) Boundaries. The boundaries of SPARTAN are really
the scope of the modeled conflict. SPARTAN is
primarily a attrition model of small unit conflict.
Other than some indirect fire, no off screen
factors influence simulation outcomes.

5) Level of detail. In SPARTA7I all events are decided
at the individuial soldier level. No processes are
aggregated.

Model Definitiony. once the modeling effort anid modeling

assumptions have been identified and the scope of the model

narrowed, the model must be defined. Models of systems have

"both a static and a dynamic description" (19:11). The

static description defines the objects or entities of the

system and their characteristics. The dynamic description

defines how the objects and entities interact to cause

system state changes (19:11-12).

Static Description. The first step in model

definition is the decision of what objects can either change

the model state or cause some action to occur (5:45). Like

the previous v7ersion of SPARTAN, the objects and entities

are:

1) Terrain cells--The data records for terrain

representation. Since the 1 km square

57

area is represented by square cells 20
meters on a side, there are 2500 cells. '

2) Events--The records controlling actions of the
model.

3) Soldiers--The operational entities. A maximum of
12 soldiers are allowed.

Each of these objects is characterized by attributes,

which more fully describe the capabilities or type of

object. Determining the number of attributes each object

required was a function of the model objectives. The number

had to be sufficient to meet these objectives without being

superfluous. Objects' attributes are listed in Tables 2-4.

Table 2 Terrain Attributes

ATTRIBU.TE DESRIPTIQN RANGE OF VALUES
1 Mobility factor .1 - 1.0
2 Background contrast .5 - 1.0
3 Elevation 60m - ll0m

Table 3 Event Attributes

A T DO RANGE OF VALUES
1 Event type 1 - 9
2 Event actor I - 12
3 Event time 0.0 - 9999.0

The system also has attributes. Like the attributes of

objects, system attributes describe the characteristics and

state of the system. SPARTAN's attributes are listed in

Table 5.

Dynamic Description. The dynamic description

defines how the objects of the system interact to change the

system state. In SPARTAN, these activities fall into three ',

58 !/

.. '• /
. .1 .. ' :, , i. .. . , ,

•/ '\ ' . . .K -•," II/ i,!.
it •- • + 'N

Table 4 Soldier Attributes

ATTRIBUTE DESCRIPTION RANGE OF VALUES
1 Side 1 = BLUE, -1 = RED
2 Duty position 1=SL, 2=ASL, 3=GRNDR

4=AR, 5=Rifleman
3 Horizontal coord. 0.1 - 999.99
4 Vertical coord. 0.1 - 999.99
5 Number of Grenades 0 - 32
6 Time last fired wpn 0.0 - 9999.99
7 Posture prior to direct fire engagement
8 Movement Direction 0.0 - 6.28 radians
9 Movement status l=moving, 0=not moving

10 posture 1=standing, 2=crouching
3= prone

11 Weapon type 1=M16A2, 2=AK74, 3=SAW
4=M203, 5&6=user defined

12 Rounds in magazine M16=30, AK74=40,
SAW=200

13 Number of magazines M16 & AK74 = 6
SAW = 3

14 Selected target 0 - 12
15 Wound status 2 =alive, 1 =wounded

0 =dead

Table 5 System Attributes

VARIABLE NAME DESCRIPTION
time Simulation clock
bluecount Current number of BLUE alive
redcount Current number of RED alive
termevnt number of events processed

categories. The first category consists of those activities

that are assumed to occur instantaneously, meaning that they

do not cause the simulation clock to advance. These events

are not scheduled activities and are not put on the event

list. They are usually sub-activities of scheduled events

and are used to update or alter object and system

attributes. These activities are listed below:

59

x *

Instantaneous Activities

Line of sight (LOS): This activity checks for
intervening terrain or vegetation between observers
and potential targets. There is no partial line of
sight, it either exists or it does not.

Detecting obstacles

Determining target posture (and thus size)

Determining observer-target range

Determining probability of detection

Developing target lists

Decrementing ammunition counts

Determining probability of hit

Determining round impact outcomes

Plotting entities on screen

Plotting engagements on screen

Changing soldier posture and direction

Calling indirect fire

Intra-squad communication

The second type of activity is the time duration

activity.-- These activities require time to accomplish and

are thus scheduled on the event calendar. In SPARTANI the

time units are generic, they are not related to seconds or

minutes. This scheduled time represents the completion time

of the activities. Within the scope of these activities are

the many instantaneous activities.

Time Duration Activities

Search: This activity is actually a continuous
activity modeled as a discrete event. Every soldier
performs a search every 20-30 time units. New search

60

cycles are scheduled after unsuccessful searches or
after engagements.

Select: This event is scheduled after a successful
search cycle, when the observer must assess his
potential targets and pick one to engage.

Direct fire: This event is scheduled by the
select event. Soldiers must stop, aim, and fire at.
their targets.

Move: This event determines a new location for the
soldier performing the activity and computes the time
to start the next move (finish the current move).

React to fire: This event is scheduled by the direct
or indirect fire engagement. Targets determine they
are being engagediand react in a stochastic manner
based on their current posture and move status.

Indirect fire: This event is scheduled by the BLUE
squad leader when he detects one or more targets. Time
is required to reference the firing data, prepare the
rounds and for the rounds' time of flight.

Change direction and formation: This event is
scheduled by either squad leader when they select a
target to engage that is more than 25 degrees off their
direction of travel. The squad leader fires, then
decides to direct his squad to alter their direction.

Breach obstacles:, When a squad hits a wire obstacle,
it takes time to b~reach it. Squads change their
posture and move status until the breach is affected.

The third type of activity consists of tasks required

to perform system maintenance activities. These activities

are not scheduled, but occur as part of the overall system

activities.

System Maintenance Activities

Initialize data sets and event calendar

Select the next scheduled event and delete it from the
calendar

Ensure simulation clock does not advance past passage
of real time

61

Update the simulation clock7

Add new events to the event calendar

Generate pseudorandom variables

Transfer program control to proper event subprograms

Terminate simulation when terminating conditions are
reached

Store historical data for system status reports and
final output

Process suxmmarized data for final output

M~odel Developmnent. Having decided on what objects and

entities SPARTAN would have and the activities that these

entities would perform, the next step in the model

formulation stage was the development of the model itself.

This stage had three subprocesses: building a database,

developing an event scheduling routine, and adding various

routines to perform the modeled activities.

Creatina a Database. This was the first step as

all objects refer to the database for their attribute values

(which, in turn, deter-mine event outcomes). There are five

types of default data files, totaling ten files altogether

(Table 6). These data files were not all developed up

front, several of them were built as new combat processes

were added and deterministic methods of deciding outcomes

proved too expensive in terms of computation time.

As data files were developed, preprocessors were added

to allow users to view and edit some of the data and create

their own scenarios. CPT Cox had originally accomplished

this using record arrays, but elected to finally use ASCII

62

Table 6 Default Data Files

FILENAME DESCRIPTION (size)
mapl.dat terrain data file (50x50x3)
event.dat initial event list (99x3)
soldat.dat soldier attribute list (12x15)
M16.dat M16 Pr(hit) table (8x3)
AK74.dat AK74 Pr(hit) table (8x3)
SAW.dat SAW Pr(hit) table (8x3)
cor.dat Pr(acquisition) table (10x3)
INFW.dat Pr(detection) table for targets

in wooded areas (10x3)
INFNW.dat Pr(detection) table for targets

not in wooded area (10x3)
THRESHOLD.dat target-observer threshold detection

levels (12x12)

files as record arrays were too difficult to view. I

decided to keep the flat file format, despite the greater

requirement for storage space. (This caused a memory

overflow problem when I attempted to compile SPARTAN,

because the data files were so extensive. The solution was

to make data arrays within SPARTAN "$DYNAMIC", thus giving

them memory addresses outside the 64K set aside by DOS for

the executable program.)

Event Set MAnaaement. SPARTAN's default time

advance mechanism is the hybrid event stop process described

in Chapter II. User's have the option of making SPARTAN a

strictly event step processing model however, through the

Alter Terminating Conditions menu. In either process, event

set managemeut is the same.

CPT Cox listed event set management as the most

difficult task in designing the original SPARTAN (5:51). He

went through several versions before deciding on a double

linked list approach.

63

I spent several hours trying to figure out the double

linked list approach and why it was used in the original

SPARTAN. With only a maximum of 12 entities and five

scheduled event types, the event calendar rarely exceeded 30

events and was frequently less than that.. Also, users could

not see the event manager functioning, so its value as a

demonstrator was nil. Consequently, the double linked list

method seemed overly complicated for the number of

activities that needed to be scheduled and 1I did not use it.

Instead, I decided to use a simple event array that

contained only the scheduled event type, actor, and time.

As the current scheduled event is completed, at least one

type of time duration activity is scheduled. SPARTAN calls

the SCHEDULE subprogram and files the event in the first

empty EVENT array row., Program control then passes to the

EVENT subprogram. Using the Just scheduled activity's start

time as a base, EVENT checks all occupied EVEN~T array rows

and identifies the event with the lowest start time. This

event is pulled from the EVENT array row (which is then

zeroed out) and program control passes to the event

subroutine referenced by that event.

This method of event set management must check all

events in the EVENT array each time a scheduled event

completes. The advantage to my method is that the problem

and computational overhead involved in unlinking and

relinking lists as events are added and deleted from the

event calendar is eliminated.

64

Model Enrichment. There were actually two separate

programs to be built, the preprocessor and the simulation.

Although developed separately, the process of building both

was cyclic, involving building and testing code for i

module, adding it to the main program, refining it, and

going back to edit and debug previously written modules as

errors became apparent with new model tasks.

The first part of the model to be developed was the

initialization subroutine. This subprogram read the data

files and created the data arrays for the rest of the

program. To avoid the problems that CPT Cox had with data

integrity (5:54), I elected to keep all data values as

single precision values instead of a real/integer mix. This

caused no problems, but I had to be careful in the choice of

my values for comp*,risons for IF-THEN statements.

Because SPARTAN was designed as an instructional tool,

I felt that the graphical representation of the battlefield

was a very important part of the model. Conseq ently, the

map screen was the first module to be developed after the

data initialization module. Combat processes were then

added to the model in the order required to test \their

performance. The first combat module added was the movement

module. This was followed in order by the search, line of

sight, select, direct fire engagement, impact assessment,

react to fire, obstacle breach, and adjust direction and

formation modules. In most cases, new modules caused

additions and revisions to previously added modules as

65

_"__

system activities became more and more complicated.

Debugging was aided by keeping code referencing future model

subprograms out of the current version of the model. In

addition, QuickBASIC has an excellent DEBUG feature and a

line editor that checks code as it is entered.

A typical improvement cycle involved creating a

subprogram and testing it in isolation. To do this, I wrote

a partial SPARTAN program to test separate subroutines.

Next, I added the subprogram to the main program. I also

added code that caused written values and messages to appear

on the screen as different decisions were made in the new

subprogram. Revisions were made as necessary. No more

subprograms were added until the current version of the

model was functioning as intended.

Randomness. Because SPARTAN is a replication of

,combat, chance outcomes play a major role in simulation

Ilogic. Simplicity rather than accuracy, however, was the

goal in dealing with probability distributions in SPARTAN.

Consequently, SPARTAN uses the QuickBASIC Uniform (0,1)

pseudorandom number generator as the basis for determining

outcomes for all stochastic processes.

The most frequently used probability distribution was

.the Uniform (0,1) distribution. SPARTAN also employs the

triangular distribution function written by CPT Cox (5:56):

This distribution was chosen because the transform
operation is efficient and the output can be used to
represent both skewed and symmetric distributions. The
function is given a low, high, and mode values and
returns a value within this range. The algorithm for

66

the transform was adapted from Pritsker (19:713). This
transform provides a rough approximation to a normal
distribution when the mode is centered and the
extreme values are assumed to be within two standard
deviations from the mean.

Although some event outcomes are derived using

deterministic methods, most are the results of a Bernoulli

trial. Probability of hit tables, probability of

acquisition tables, and probability of detection (given

targets are acquirable) tables were all computed beforehand.

These tables are referenced by the appropriate subprogram

and compared .'-o the random variable. This method is similar

to ones used by both JANUS and CASTFOREM for various

weapons' data. In the case of SPARTAN, these probability

tables are based in large part on actual accuracy data from

AMSAA and on NVEOL data. Some interpolation and

approximation was necessary, but overall the results are

close to the data used in more capable models. These tables

were originally created using MATHCAD templates, examples

of which can be seen in Appendices A-C.

Instructional Components

Since SPARTAN was designed as an instructional tool, it

has several features not normally found in purely analytical

models. Some of these features can be found in the

preprocezsor, which not only allows the user to alter

default data or create his own files, but is also designed

as an instructional device. Another feature, found in both

the preprocessor and the simulation, is the help file. The

67

- N

third feature is the graphics of the simulation. Simulation

output also is an instructional component.

The Preprocessor. SPARTAN's preprocessor, STARTUP.exe,

was created to allow users to load, view, or edit default

data files and to assist them in learning about what their

options are for altering default data. Basically,

STARTUP.exe reads the .dat extension data files into arrays,

allows the user to edit them, and creates .exp files for.

SPARTAN to read.

STARTUP is menu driven and, like SPARTAN, has extensive

help files. The four data files that STARTUP allows the

user to edit are the terrain data file, the soldier

attribute list, the initial event list, and the probability

of hit tables.

Terrain Editor. Unlike the first version of

SPARTAN, the terrain attribute list is hard wired. Because

the data must match the graphical representation on the

screen for the screen to be meaningful, the data files are

closed to users. The terrain editor, however, is designed

to assist first time land combat modelers. It offers the / .

options below:

1) View map--allows the user to view the map.

2) Add obstacles--allows the user to add one wire
obstacle. Creates OBS file for SPARTAN.

3) View terrain dat--allows the user to view terrain
cell data.

4) View elevation data--allows the user to see how
terrain cell elevation data dictates contour N

lines.

68

.. / V//

5) Line of Sight--allows the user to pick observer
location and checks the line of sight for user
input ranges and fields of view.

The terrain data file is call KAP1.dat and contains 3

attributes for each of 2500 terrain cells as discussed '

earlier.

Soldier Attribute Editor. The Soldier Attribute

Editor allows the user tu accomplish tasks listed below:

1) View BLUE soldier attributes--allows the user to
view selected BLUE soldier attributes.

2) View RED soldier attributes.

3) Add soldiers--allows the user to add soldiers (for
a maximum of 12 soldiers).

4) Delete soldiers.

5) Edit soldier attributes--allows the user to edit a
selected soldier's attributes.

6) Pick formation and location--allows to pick the
BLUE squad leader's location and one of four BLUE
formations. Automatically updates position data
for the remainder of the squad.

Probability of Hit Editor. The Probability of Hit

Editor allows the user to either review current Phit tables

or to create his own Phit tables. SPARTAN uses the Polya-

Williams approximation (10,13) to compute the single round

hit probability of a hit on a rectangular target. Then,

assuming each round within the burst is independent,

computes the probability of a least one hit for each burst

of fire.

Polya-Williams needs both vertical and horizontal aim

and ballistic error. STARTUP will show the raw error data

69

and the computed Phit for each weapon referenced by target

posture and range.

Users can also input their own weapons' data, but they

need aim and ballistic erro r (vertical and horizontal) for

ranges of 100 to 800 meters (in 100 meter increments).

STARTUP will then compute and show the Phit tables. For the

table to be used however, the user must alter at least one

soldier's weapon to reflect the new weapon type.

Evmnt List Editor. The Event List Editor allows

the user to accomplish the tasks listed below:

1) View initial event list.

2) Add events to initial list.

3) Delete events from initial event list.

The event list has an event type, time, and actor for all

scheduled events.

Help Menu. In addition to the above options,

STARTUP offers help on all four subjects. Users can access

the help menu from the rain menu or from the editor in which

they are currently located.

SPARTAN. SPARTAN Las three main instructional
components: the help metthe graphical representation of

simulation events, and t e battle statistics offered as

output during simulation runs or after terminating

conditions are met.

HelpMenu The help menu in SPARTAN can be

accessed from the main menu. The help menu contains files

on each of nine combat processes: search, select, move,

70

direct fire engagement, indirect fire engagement, react to

fire, impact assessment, terrain representation and

obstacles, change formations, and general information about

setting up and running SPARTAN. These are usually several

screen pages in length and go into detail about simulation

logic and equations.

Simu~lation Graphics. The simulation graphics of

the current version of SPARTAN differ greatly from the

original version's: the terrain looks like a military

1:50,000 scaled map, soldiers are stick figure icons of the

appropriate color, firing is represented by a line clearly

being drawn from the observer to the target acco~mpanied by a

burst of sound representing the number of rounds being

fired, indirect fire is represented by a line drawn from the

firer to the impact point and an explosion scaled to the

bursting radius of the round, and 1-ons change colors when

killed (as they did in the original). All of these features

are designed to aid users in understanding what each icon is

doing and thus understand why simulation results are the way

they are.

In addition to graphics, SPARTAN shows messages on the

top of the screen to reflect both simulation activities and

player (icon) communication. The current simulation clock

time is shorin in the upper right corner, as are the current

event and actor. Messages reflecting detection and squad

leader commands to his squad are shown in the upper left

corner, as are the results of engagements and the

71

., , . . . " r - :'/, . ,• - . .4 . .
/ -."/:-., "// . i,

probability of hit that caused the outcome. These messages

too, help the user to understand model workings.

Output. SPARTAN offers output both during the F

simulation run and after simulation termination. During

simulation runs, users have access to the following

information:

1) Current soldier attributes. Translates current
soldier attribute values into Znglish for both BLUE
and RED.

2) Current potential target list. Shows the current '--

values in the potential target list. Allows the
user to assess who has acquired who, and who has
tried and failed to acquire who.

3) Current Event list. Shows the current event list
(in order of execution) in English.

4) Current battle statistics. Shows the current WIA
and KIA status for both sides.

After the simulation terminates, the user also has the

option of reviewing the above tables and a Kill Card which

reflects how many soldiers were hit by weapon type and the

maximum, minimum and mean range of hits for each weapon. I •

SPARTAN also creates a history file. This file contains

every scheduled event type, the time it occurred, and the

actor who performed the event.

Model Assessment
\ \- .k

Assessment of the new SPARTAN was much like that of the

original version. Primarily it revolved around an

assessment of how well the original project goals were met

and how well it met evaluation criteria established by the

1979 GAO report on Defense Analysis.

72

Assessment Process. The assessment process for SPARTAN

took place in three phases. The first phase was an

evaluat-ion by me. The thesis advisor then evaluated the

model and provided more guidance and suggestions as to focus

of effort and improvements. The final assessment was the

same as used by CPT Cox, blind testing.

Blind Testing is suggested by James Dunnigan in his

book, The Complete Warcames Handbook, and involves a series

of laboratory tests performed by personnel with backgrounds

similar to those of the targeted audience. For SPARTAN, I

used two iterations of blind testing. In the first test,

three students of a land combat modeling course were issued

a copy of the model, supporting data files, and a user's

guide. Two students were Army officers with extensive

experience in small infantry unit operations. The third

student was an Air Force officer. The second group

consisted of three Army officers of mixed background

experiences. Students were given no verbal instructions,

other than to comment on problems with using the

preprocessor, understanding the user manual, or perceived

problems with model operations. Improvements were made both

to the model and to its operating instructions after each

iteration of testing.

GAO Criteria Assessment. The GAO report lists five

criteria for use in evaluating models. These are:

documentation, validity, verification, maintenance, and

usability (11:9). These are discussed below.

73

Documentatio~n. Documentation refers to the

ducuments and comments that accompany the model (12:27-28).

The purpose of documentation is to allow someone other than

the model builder to understand the model assumptions,

methods, and inner model workings. In this sense, SPARTAN

has two types of documentation. The first is the user's

manual and the help files in the preprocessor and the

simulation. This documentation is intended for the user who

does not wish to get into the nuts and bolts of programming.

The second type of documentation is the thesis. This

documentation is intended for the user who wishes to go into

great detail about algorithms and equations.

Most user's of SPARTAN will use the user's manual and

the online help as opposed to the thesis. The user's manual

and online help were designed to be used in concert with

each other, neither are stand alone documents. Using CPT

Cox's findings, I elected to make the user's manual more of

a general document about how to use t;PARTAN and the - --- -

preprocessor. It has narrative outlines about model

functions and methodology. The online help contains much

more detail about algorithms and equations used in specific

processes.

The thesis document was intended to provide a more -

thorough discussion about model formulation (including

assumptions, goals, and limitations) and the specific

techniques used to model various combat processes. This

chapter accomplishes the former while Chapter IV discusses

74

in detail how modeling combat processes was accomplished.

Appendices A-C contain the templates used to develop the

probability tables and Appendices E and F contain the

program code for the preprocessor and SPARTAN. All this

information should be enough to allow a user, familiar with

QuickBASIC, to begin altering code after a few weeks study

and should satisfy the GAO criteria.

Validity. CPT Cox listed three types of validity

from the GAO report (5:64). These were data validity,

theoretical validity, and operational validity. This

version, like the original version of SPARTAN, makes no

pretenses of being a "valid" recreation of a small unit

combat. The objective was to demonstrate current model

techniques in the present generation of high resolution land

combat models. Nevertheless, I strove for as much data

validity as possible. Weapons' data, for example, is the

same accuracy data used by JANUS and CASTFOREM. On the

other hand, acquisition data is simulated, although it is

close to data used by "real" models. Therefore, SPARTAN has

only partial data validity.

There is also partial theoretical validity in SPARTAN,

as most of the algorithms are adopted from JANUS and

CASTFOREM documentation. However, even these algorithms are

suspect. A search of .jANUS and CASTFOREM documentation

reveals many heuristics and data used for purposes far

outside its original test conditions (the NVEOL applications

are a good example of this).

75

Operational validity does not apply to SPARTAN either,

as it is contingent on theoretical and data validity.

In SPARTAN's case, validity is the ability of SPARTAN

to meet its intended goal of providing a useful tool for

beginning land combat modelers. Blind testing revealed that

this goal could be met.

Verification. Verification ensures that computer

code is performing its functions as intended. Verification

of code began with initial code testing before modules were

added to the main program. A special "little" SPARTAN was

developed for testing subprograms. Then, after these

subprograms were added to the main program, parameters were

altered to simulate a wide variety of conditions to ensure

all parts of the program were functioning correctly. in

many cases I accepted limits that CPT Cox had established.

Blind testing turned a few verification problems, as

outsiders applied previously unused scenarios to the

simulation. Most of t hese problems were quickly corrected.

Maintenance and usability are discussed in the context

of meeting design objectives below.

Model Objective Assessment. There were four

objectives in designing SPARTAN: portability, usability,

simplicity, and applicability. All of blind Testing group

felt that the goals were met.

Portability. SPARTAN was designed to run on most

IEMs or IBM clones. it was tested on computers ranging from

the 286 it was designed on, to the 486 at the AFIT computer

76

laboratory. It runs much faster on 386s and 486s of course.

One result of this finding was the option of relating the

advancement of the simulation clock to the passage of real

time. This was necessary in order to slow simulation runs

and allow users to see and understand model functions.

Usability. The objective of usability benefitted

the most from the blind testing. Having fresh eyes and

brains run the simulation really aided in making the model

user friendly. The preprocessor was modified greatly after

the first round of testing. All testers felt that the

simulation was usable and that modelers would benefit from

the simulation.

Simplicity. Simplicity benefitted from the

structured programming that QuickBASIC allows. New

processes need only be written, then plugged in (or yanked)

as a module or subprogram of the main program in QuickBASIC.

Because SPARTAN is menu driven and user input is limited,

the program is very simple to operate, this also relates to

the previous objective. This objective also helps meet the

GAO criteria of maintenance, since modular coding, the

programming language, and simple algorithms make SPARTAN

easy to maintain.

Applicability. This objective goes back to the

validity issue. All processes were modeled on current

techniques and all data is real or as real as possible.

Testers felt that the processes were applicable and that

beginning modelers would learn by using SPARTAN.

77

Summa ry

Designing SPARTAN was an iterative process of model

formulation, coding, implementation, debugging, and

modification. This development process was modeled after

the processes recommended by Pritsker and the conical

methodology. Using these processes, the following model

components were developed:

1) Input Data Files

2) STARTUP preprocessor

3) SPARTAN simulation with subprograms for:
-scheduling events
-initialization of data bases
-transferring program control to sub programs
-terrain representation
-target acquisition
-line of sight determination
-target selection
-direct fire engagements
-indirect fire engagements
-round impact assessment
-reaction to fire
-command and control
-online help
-battle statistics
-movement
-obstacle breaching

4) Model documentation

5) User's manual

The next chapter reviews how specific combat processes were

modeled.

78

IV. Combat Processes

Introduction

This chapter focuses on the algorithms and equations

used in SPARTAN to replicate specific combat processes. All

methods of modeling combat processes are based on techniques

used in the present generation of high resolution land

combat models. For each process, there will be a

description of the technique (including formulas and

algorithms), a discussion of the limitations and assumptions

involved in the method, and a flowchart demonstrating the

algorithm. The processes are discussed in the general

subject order of move, search, shoot, and react for ease of

discussion of process flow.

Movement

Like JANUS and CASTFOREM, this version (as well as the

original version) of SPARTAN models movement, a continuous

process, in discrete steps. Both versions of SPARTAN also

resemble JANUS and CASTFOREM in. that movement is a function

of the moving entity's and the terrain cell's attributes.

This SPARTAN differs from the original version in that it

models obstacles and moves entities in a manner that

maint&uins unit formations.

79

F-. -

Step Size. SPARTAN advances all entities 20 meters per

move, regardless of entity posture. The new entity location

is computed every move cycle based on the two equations

below (10:40-15):

Znew-Xold+2OxCOS(DIR) (i)

Ynew- Yold+.20 xSIN(DIR) (2)

The Xold and Yold represent the current horizontal and

vertical coordinates of each entity and DIR represents the

direction of movement of that soldier. All three are

soldier attributes. Unlike JANUS and CASTFOREM,'in which

entities change direction according to preset movement

control points, the direction of each soldier remains

constant unless changed by the squad leader. More will be

discussed about this subject in the section about the CHANGE

DIRECTION AND FORMATION subroutine.

Movement Time. Since the movement distance is constant

for every move, movement time is used to reflect variability

in movement rates. In SPARTAN, this time is a function of

the posture of the soldier, the mobility Zactor of the

terrain cell in which he starts his move, and a pseudorandom

Uniform (0,1) variable

movetime-10+10 x RW• (12)mobilityfactor x postur (

80

Since mobility factors range from .1-1, with lower values

having worse mobility and posture values range from .25-1,.

again with reduced postures having lower values, the effect

is to increase travel time for the 20 meter increment for

decreased trafficability or reduced posture.

All movement times are decided by the squad leader for

either side. The designated squad leader is the first

entity scheduled for a move and his attributes dictate the

move times for the remainder of his squad. This was done to

maintain formation integrity for both sides. This is a

realistic limitation, as the first commnand of the squad

leader to his squad is to "follow me and do as I do".

Neither roads nor the slope of the terrain have an

impact on soldier movement times. This is not unrealistic,

as dismounted infantry moving in this type of scenario would

not be affected by slope or the presence or absence of

roads. obstacles do affect movement.

Obkstacle. Obstacles are input by the user in the

preprocessor's terrain editor. The only obstacle type that 7

SPARTANI recognizes is a wire obstacle (triple strand

concertina). Unlike JAINUS and CASTFOREH, the only option

for soldiers who encounter obstacles intersecting their path

of travel'is to breach the obstacle. Also unlike JANUS,

there is no such thing as a "friendly obstacle", obstacles

impede both'sides, not just the enemy.

Because the movement time is determined by the mobility

factor of the terrain cell in which the move starts,

81

soldiers do not realize that they are breaching until their

new location is computed. When a soldier detects that he is

in a terrain call with en obstacle, the entire squad changes

into a prone-nomnoving status to begin bretching. In

addition, all moves for that side are deleted from the event

list and an ENDBREACH event is scheduled for 100 time units

in the future. At that time, the squad changes back to a

standing and moving status and moves for each squad member

are scheduled.

SPARTAN Movement Process. In SPARTAN, movement is

controlled by one subprogram called MOVE (Figure 3). This

routine accomplishes a number of actions including

determining movement times, updating soldier attributes, and

updating graphics.

The first function MOVE accomplishes when called, is to

check the status of the soldier to ensure that he can move.

If the soldier is in a nonmoving status, dead, or his side

is in a breach mode, the subprogram ends and program control

passes back to the main program to allow sequencing of the

next scheduled event. Some of these checks are redundant

(as dead soldiers should be in a nonmoving status), but were

left in the code to ensure that there was no programming

error.

MOVE then checks the soldier's attributes to ascertain

his screen location. If the soldier is on the screen, his

old position is erased. After computina the new location

based on the soldier's direction of travel, the new position

82

//

STERRAIN ' E
/ATTRiIOS

*O~eUL NOAOO

is ~ ~ ~ ~ ~ ~ ~ ~~a potdothscen Thslcion rerSeUNtwhr

oEfAth nt ON v e OOMPUTE tEh cILOOaTIONI
MUPOkWt e iOLDf e t iIATTRIM0

SPLOT 100N

IsI

6OHEDUL.E NeXT ••I

MOVE _

Figure 3 Move Process

is plotted on the screen. This location represents where

the soldier will be at the end oa the move time (beginning

of the next move event). MOVE then checks the terrain cell

attributes of the new location and, if there is an obstacle

present and the squad is not breaching, a BREACH is called,

all squad movement stops, and program control passes to the

next calendar event.

MOVE next checks to see if the soldier is a squad

leader. if he is, an outline is drawn around the icon (to

designate him as squad leader) and the move time for that

side is computed and scheduled for the squad leader.

83

______________/

Program control then passes to the next calendar event. If

the soldier is not a squad leader, his next move event is

scheduled based on his squad leader's previously determined

move time.

Limitations and Assumptions. The low level of detail

in this movement process results in the following

limitations and assumptions:

1) Entities are in an iterative process of moving and
stopping rather than continuous movement.

2) Soldiers always move in 20 meter increments,
regardless of the situation. In reality, there
might be cases where moves less than 20 meters
might be desirable.

3) Slope does not affect movement speed.

4) Trafficability is determined by the starting
terrain cell and is assumed to remain constant
throughout the move.

5) Because the battle duration is short, soldier
fatigue is not a factor.

6) Movement times are scaled to look "right" and do

not reflect real times.

7) Computations are scaled for graphics.

8) If a soldier changes posture during movemer., t'-
change does not affect the move in progress.

9) Soldiers cannot read terrain, and dc not alter
movement based on obstacles, avenues of approach,
or cover and concealment.

Taraet Search

SPARTAN uses a search process based on the Night Vision

Elector-Optical Laboratory (NVEOL) model. Unlike the

original SPARTAN, this version of SPARTAN more closely

replicates the process used by JANUS and CASTFOREM. Like

84

movement, search is a c~ontinuous process Ywc±e1ed in discrete

steps.

Search is actually a three phased sequential procesc.

If the success threshold at any phase is not reached, then

that search sequence is unsuccessful and target detection is

not achieved. The three conditions for target detection

are.:

1) The target must give off sufficient signature to be
detected by the observer.

2) The observer must have line of sight to the target.

3) The observer must be looking at the target.

This version of SPARTAN, like the original, assumes a

full 360 degree search pattern. JANUS also does this, but

changes the field of search to 180 degrees when entities are

stopped, while CASTFOREM's search pattern is a function of

time. While a 3FO degree search pattern replicates a squad

maintaining good security, it eliminates the effects of

focusing on sectors of responsibility or known enemy

positions and probably does not accurately reflect normal

soldiers' search patterns.

This version of SPARTAN differs from the original in

that the search process is not memoryless. in the old

SPARTAN, every search process was new, soldiers did not

remember detecting any enemy on previous searches. Also, a

squad member's successful enemy detection did not improve

the probability of other squad members detecting that enemy

soldier. This version of SPARTAN attempts to correct this.

85

Condition I: Sufficient Sianature. The first condition

that must be met for successful target detection is that the

target gives off sufficient signature for the observer to

detect it. Like JANUS and CASTFOREH, SPARTAN assigns every

possible observer-target pair a random threshold level of

resolvable iycles (see Chapter II). Each of these threshold

levels is from a random lognormal distribution with the

uncerlying normal distribution having a mean of 3.5 and a

standard deviation of .698 (17:25-32). These random

threshold levels of resolvable cycles are then translated

into threshold levels of detection. This has the effect of

injecting randomness into the detection algorithm and can be

Justified by the fact that some observers will discern

targets more quickly than other observers (and by the same

thought, some targets are more discernable than others). The

observer's ability to discern a target given unlimited time

observing his sector determines whether or not he exceeds

this threshold level. The computations for this threshold

data are Appendix A.

The observer's ability to discern a target, called

Pinf, is a function of target-background contrast, observer-

target range, sky-to-ground brightness ratio (800), and a

atmospheric attentiation coefficient. The first step in

computing Pinf is to compute the attenuated contrast, which

is the apparent target-background contrast taking in the

above factors. This is computed by Equation (4) from

Chapter 11(14:25).

86

At tenua todcon tract- targetccntrast (4)1+SOG x (eatawarten X X&V9-l)

SOO is set at 2.5 (14:25) and the target contrast for the

visible spectrum is between .2 and .3. I used .3 for

nonwooded areas and 2.9 for wooded areas. The documentation

for JANUS(L) did not give atmospheric attenuation

coefficients, so I experimented with various values and

settled on using .01. The results using these coefficients

seemed reasonable.

Once the attenuated contrast was computed, the next

step was to compute the target dimension in milliradians

mIllzadlan-tMin t.Dim(meters) (13)Ra•Lge (m)

Where the minimum target dimension was determined by target

posture (Table 7).

Table 7 Target Dimensions

POTR DIMENSION MINIMUM DIMENSION
Standing 1.8m x .am .am
Crouching .9m x .am .Sm
Prone .45m x .8m .45m

It was then necessary to determine the cycles per

radian, which is a function of a sixth degree polynomial of

the natural log of the attenuated contrast. Having

determined the cycles per radian and the radini, per t&rget.

dimension, it was then possible to determine the cycles

resolvable for the observer (cor) for different ranges and

target postures. These values were entered into tables by

87

target posture and range (in 100 meter increments) and for

the target background contraist (depending on whether the

target was in a wooded area or not). Calculations for these

tables are in Appendix B.

Once the cycles resolvable for the observer (cor) was

determined, the next step was to determine the Pinf value

for target posture, range, and background contrast. This

was done using Equation (5) from Chapter II (14:26).

car 2.7 .7xe

.3. 5 (5)

Where "cor" is the cycles resolvable by the observer and 3.5

is the average cycles resolvable required for target

identification. The calculations for this table are also in

Appendix B.

If the Pinf in the lookup table for the given range,

target posture, and background is greater than the threshold

level f~r the particular observer-target pair, then the

target \s giving off sufficient signature and the search

process tests the second condition for target detection.

SCon~iton II: Line of Sight. If the target is giving

off sufficient signature, then it must be determined if the

view of t e target is blocked by intervening terrain or

vegetation. In the original version of SPARTAN, the

intervening terrain had no vegetation, only terrain

elevation could block line of sight. Also, SPARTAN only

o/" 88

checked LOS every ten meters. It was possible for an

intervening terrain cell to block LOS and not be checked if

the observer-target line cut across the terrain cell at some

angle other than a perpendicular one.

In this version of SPARTAN, LOS is checked in every

intervening terrain cell between observer and target.

First, SFARTAN determines the observer elevation based on

his posture and the elevation of the terrain cell, in which

he is located. SPARTAN determines the target elevation

based on the same attributes. SPARTAN then determines the

equaation of the observer-target line and the slope of that

lin'! aased on these two elevations. Then, using the slope

of the line and the distance along this line from the

observer, SPARTAN compares the elevation of every

intervening terrain cell to see if it blocks the observer-

target line. If the terrain blocks the line, LOS does not

exist.

SPARTAN also takes into account the vegetation of the

terrain cells in which the observer and target are standing

as well as the vegetation in all intervening terrain cells.

SPARTAN first checks to see if the observer is in a wooded

area (denoted by a mobility index less than one). If so, it

ignores vegetation effects until the observer-target line

gets to a clear (non-wooded) area. once the line enters a

clear area, any subsequent vegetation height is added to the

elevation of the terrain cell which contains it. This is

done using Equation (14). Depending on the mobility factor,

89

.zM.vaeton-.1.vaeion+ 10 (14)

aobt.l177factoz

this might add 14-16 meters to the terrain cell's elevation.

This has the effect of allowing LOS to targets in the same

wooded area the observer is in, but blocking LOS to targets

in other wooded areas.

Condition III: Detection. If the target is giving off

sufficient signature and the observer has LOS, then it must

be determined if the observer detects the target. Because

of the randomness involved in this condition, SPARTAN

directly computes its existence.

First, SPARTAN computes the probability of the target

being in the observer's field of view during this search

cycle (14:28-29).

. 4W x (1.7.3.4XM (15)

Were cor is the cycles resolvable by the observer determined

in Condition I and RND is a random Uniform (0,1) variable.

Then, using Pinf and Pfov, the probability of detection

is computed using Equation (7) from Chapter 1I (14:26).

P(detection) -PWnf x Pfov (7)

SPARTAN then performs a Bernoulli trial to see if the target

was detected.

SPEUTAN Search Process. In SPARTAN, the search process

is controlled through two subprograms called LOS and

ACQUIRE. ACQUIRE is a scheduled event and determines if

90

• :.• - • • •i• :• /

target signature is sufficient, calls to LOS to determine if

line of sight exists, and then determines if detection is

made.

When ACQUIRE is called, it first checks to ensure that

the observer is alive. If the observer is dead, then

control passes to the next scheduled event.

Next, the subprogram checks to see if the observer is a

squad leader. If he is a squad leader and wire obstacles

are present, a call is made to the subprogram WIRE. WIRE

first checks to see if the current direction of travel

intersects a wire obstacle. If it does, then LOS to the

obstacle is checked and if it exists, a message ref lecting

obstacle detection is shown on the screen. No other action

results from obstacle detection because no direction changes

are permitted. If the~ obstacle does not cross the squad

leader's path or if there is no LOS, no detection occurs.

After WIRE completes execution, control passes back to

ACQUIRE.

When the squad leader finishes obstacle detection or if

the observer is not a squad leader, SPARTAN checks all enemy

soldiers to see if the observer can detect them. First,

SPARTAN accesses the Pinf and COR tables by target'range,

posture and background. It then compares the Pinf to the

observer-target threshold level (Figure 4). If the Pinf is

too low, SPARTAN checks the next enemy soldier.

If Pinf is sufficient, ACQUIRE calls LOS to determine

if line of sight exists (Figure 5). If los does not exist,

91

/01s /Fa.o U

Conditio I Fiue6) to deerin if etctonwa

sucsfl f eeto a sucsfl th potential .

aeeoteryf eney trIf tdetion

wFiule search c e uteps

beeRTN maegn todtcqustio allk nhnx enemy soldiers.n hpanwsac

It LO and P fcniin r e, SPATA chck

92.

/!

of detection f oa the "feactin

. -• suces fuT l deegn acqustion is heow s on the sc exten, m a SELECT r

t ime), and th oseve condtionus toe searc until he has

,, attemptdiinIl(gue) to detet vry nemytrgetn . If th detectionwa

tiaes unsucsfl the oseavrc continuestosah until anatemp has

" ~been made to detect all enemy soldiers and thep a now search

S . . . " / i "' :-2

A I9
to WCOPUOP

/EXT SOT

I TERRAIn•N /

0 2 L 4 -

Figure 5 Line Of Sight Process

scheduled. The new search time is random time between 0 and

40 time units in the future.

lieurist~ics. One heuristic this version of SPARTAN uses

is the modification of the target dimension (and thus the

"cor") based on target's move Qnd firing status. Ii the

target is moving or has fired in the last 20 time units,

SPARTAN doubles the target dimension, increasing Pfov and

the probability of detection. This heuristic is the same

used by JANUS (Chapter II) and has the effe.t of focusing

the soldier on a target area because of some target action.

93

/kZ

eCAUJ READY m4T XTaca J
_ in"0

IV-"--- UG 0

Niueo Dtcto rcs Co~ii~II

Mothe heuIngoeelpdfrSPRA oacon o

squad coumnmcation in tu eveCOMPofE suc esfuldtcin
is themodifcatio e! te potntial tare list. PnObi

heuritic Ftheuroeblt of detection irce s mulntiplied y

negative linear modifier (-.4) and put on the potential

target list for all soldiers on the observer's side. The

modifier is negative to reflect tha%' detection has not

occurred for that observer target pair.

A third heuristic is employed in the event of a

unsuccessful detection (given Pinf rand LOS ezim~t). In this

event, the probability of detection is modified by

(.3) and added to the observer's potential target list.

94

The reason for this is to make the search -4tects

cumulative.

The results of these last two heuristics is that in

subsequent searches, it the observer's potential target list

value for a particular target is negative, his probability

of detection for a given target is increased because the

absolute value of the negative Pdet is added to the computted

probability of detection before performing the Bernoulli

trial. Thus, if a fellow squad member detected a target or

if an unsuccessful search was conducted, the chances of

detection on subsequent searches is increased.

In addition to modifying the potential target list

values based on previous searches, the potential target list

value for a target is returned to zero if line of sight ever

is lost, either on a subsequent search or in a direct fire

engagement.

Limitations and Assumntions. The following limitations

and assumptions exist in this search process:

1) Because of the many steps involved in computing
Pinf and cor, values are in table form.
Interpolation must be used for ranges not in 100
meter multiples.

2) Sky-ground brightness ratio, atmospheric
attenuation factor, and background contrast ratio
are constants.

3) There is no partial line of sight. If the observer
can see the target's eye, then SPARTAN assumes the
entire target can be seen.

4) Elevation throughout the entire terrain cell is
constant. It is possible for a target to be next
to a neighboring terrain cell and not be seen

95

because of the elevation difference of the two
c0115.

5) Linear modifiers used in heuristics for successful
and unsuccessful detections are arbitrary. They
seem reasonable based on experience, but no data of
any kind was involved in deriving them.

6) The heuristics used for targets that are shooting
or moving are those used in JANUS (14:2-32), but no
data is present~ad in the JANUS documentation to
support them.

7) Targets are always perpendicular to the observer.
Target dimensions are not adjusted for side or
off-center view points.

Target Selection

Once an observer har detected one or more targets, he

must decide if he wants to shoot at a target, which target

he wishes to shoot, and which of his weapons he wishes to

use. Target selection is the process that decides all of

this. The SPARTALN selection process, SELECT, is more like

the process employed by JANUS which uses range, weapon

accuracy, and probability of hit to decide which target to

engage, rather then the process employed by CASTFORm(, which

uses weighted decision variables.

This version of SPARTAN is like the original verszion in

that the probability of detection value is used to determine

target selection. This is because the probability of

detection takes into account range to target, target

dimensions, and signature of target (target movement or

firing). Thus targets that are close, have fired, are

standing, or are moving wiil have larger probabilities of

detection than prone nonmoving targets. This corresponds to

96

a target sel. on process wherein observers engage the

target they perceive is most dangerous.

SPARTAN Target Selection Process. The subprogram

SELECT (Figure 7) accomplisbes several tasks in SPARTAN.

It selects a target for engagement, schedules the

engagement, and, if the observer is a squad leader, may

schedule a formation and direction change. SELECT also

schedules indirect fire missions.

OALL SAD OSSERVER
-E. or R".LINGES

ECTION =IOMHANND 70.ML

-UMl P,,•Tti -ALU a•" IN("AA.IZE PJOIT) 1'•LUg8

I0 TOTS 1 I T"Ics TOL

TIT'

Figure 7 Select Process

97

The first task that SELECT does is to check the

observer's potential target list and count all detected

targets (those with positive probability of detection

values). SELECT then normalizes the detected targets'

probability of detection values and uses a random Uniform

(0,1) variable to select the targ3t to engage. This ensures

that targets with the highest probabilities of detection are

more likely to be selected. SELECT then schedules a direct

fire engagement for a random time (between four and ten

seconds in the future). This time accounts for changing

observer posture and aiming at the target.

If the observer is the BLUE squad leader and has

detected more than two enemy targets, SELECT also schedules

an indirect fire event 20 time units in the future. These

20 time units account for the transl tion of target

coordinates into firing data and foz preparing and shooting

the ammunition. The threshold is set at two enemy targets

because fire support is a valuable asset and should only be

used for multiple targets and because it is assumed that RED

soldiers are moving in formation. Limiting indirect fire

requests to the squad leader simulates the fact that only

the squad leader has a radio to communicate to the next

higher command.

If the observer is a squad leader of either side,

SELECT schedules a formation change for 20 time units in the

future. This 20 time units allows the squad leader to fire

and then decide if his squad ne6ds to change formation and

98

direction to react to the threat posed by his selected

target.

Limitations and Assumvtions. The target selection

process used by SPARTAN has the following limitations and

assumptions:

1) If an observer detects a target, he will engage it.
There is no criteria for raximum range. This is
not unrealistic, as it caises target suppression.
In other scenarios, some fire restrictions might be
desired.

2) Observers have perfect range estimation for target
detection and selection.

Direct Fire Encacements

Unlike the original SPARTAN, the new SPARTAN uses real

weapons' data for weapons in the current U.S. and Russian

inventories. The default weapons' assignments are listed

below:

Table 8 Default Weapons' Assignments

WEAPON

Squad Leader M16A2 AX-74
Team Leader M16A2 AK-74
Automatic Rifleman M249 RPK-74
Grenadier M203
Rifleman M16A2

Accuracy data was obtained from the Army Material System's

Analysis Activity and translated into probability of hit

tables for each weapon, range, and target posture. All of

the weapons are burst fire weapons, that is, they fire more

99

than one round for each trigger pull. Soldiers do not have

the option of firing single shots.

Probability of Hit. The weapons' accuracy data from

AMSAA consisted of the horizontal and vertical dispersion

factors for aim and ballistic error (in milliradians) for

each range from which the weapon was fired. To convert this

data 'nto probability of hit tables, I used the Polya-

Williams approximation as outlined by Hartman and the

Knaineerina Design Handbook. Army Weapon Svstems Analysis.

Part 1.

Polya-Williams assumes a rectangular target. It also

assumes impact distribution is bivariate normal with the

mean miss distance in the horizontal and vertical directions

and bias eqtual to zero (13:7-18).

The first step of the approximation was to calculate

the total variance in the horizontal and vertical direction.

This was done through equations (16) and (17)

•-o.Oz_...+ • g (16)

(17)

The approximation for a single round hit is then

(13:7-18)

Phi t rXm ýx ýY" (

Where (13:7-18)

0(19)

100

-- -____. - ,,-.! /. .. "

m "7

(Lx is equal to half the target width.)

The equation for the Y term is similar, but with Ly

equal to half the target height

-2xLp,, (20)

Once the single round probability of hit was estimated

for the given range and target posture, I assumed

independence of each round within the burst. This

assumption allowed me to compute the probability of at least

one hit for multi-round bursts (10:20-13). Thus, the final

probability of hit is

Pb. tmaa-1- (1-Phi ta•,) a (21)

Where n is equal to the number of rounds fired in the burst

(three for each 116 and AX-74 burst and six for each M249

and RPS-74 burst).

Some interpolation was necessary to adjust Phit tables

so that the ranges were uniform, but all tables are

referenced by raxt• and target posture. The MATHCAD

templates for these tables are in Appendix C.

Grenade Launcher. In addition to processing rifle and

machine gun engagements, the SHOOT subprogram handles

grenade launcher engagements. The first step in the grenade

launcher process is to compute the impact point of the

round. This is done using accuracy data from AMSAA and two

triangular distributions. Two random numbers, representing

the horizontal and vertical miss distances from the target

101

center of mass, are drawn from two triangular distributions

with modes of zero and end points equal to plus and minus

two standard deviations from the mode. These random numbers

are added to the horizontal and vertical coordinates of the

target, which gives the impact point of the round.

The probability of hit is determined using Carlton's

algorithm (17:78) and is a function of the burst radius of

the round (five meters for a M203 round) and the miss

distance (target location - impact point)

Pht-e (22)

SPARTAN Direct Fire Process. In this version of

SPARTAN, the SHOOT subprogram (Figure 8) processes all

direct fire engagements. Although the bullet flight is

instantaneous, SHOOT is scheduled between 4 and 10 time

units after SELECT to allow time for the observer to assume

a ftring position and to aim at the target.

The first task of SHOOT is to ensure that the observer

is still alive. Next, SHOOT computes the observer-target

range and makes a call to the line of sight subprogram to

ensure that the observer can still see the target. If LOS

is obstructed, the probability of detection value for that

target is zeroed out, a search is scheduled (in a random

time between 10-20 time units), and program control passes

to the next scheduled event.

If LOS still exists, SHOOT then checks to see if the

observer has enough anmunition in his current magazine to

102

*

"Io.- io a I"

fieacmleebrt If nOo• t the•v obere mus changem

Sw / I OUG•NNT U0221,#i"Ge L8 19I

Figur (8 Direct Fir Proes

magazines. His rounds remaining count is incremented,

magazine count decremented, and a direct fire engagement-

rescheduled. Prograz. control then passes to the next

scheduled event.

If the aziuunition count is sufficient, the observer's

attribute #6 is updated to reflect the current simulation

time, this increases his signature and his probability of

being detected by an enemy. Also, the observer's ammunition

count is decremented by the number of rounds he fires in a
burst (t16A2s and FK74s firr 3 rounds and PoNs and RPK74s

103

fieacmlt/usi otteosre utcag

fire six rounds per burst). SPARTAN then goes to the

correct probability of hit table for the observer's weapon

type and draws the Phit value for the target range and

posture. Determination of whether the engagement was a hit

or a miss is made by a Bernoulli trial.

If the soldier is assigned an M203, SHOOT decides which

weapon system he will use to engage the target. If the

target is less than 300 meters away, the observer will use

his grenade launcher. If the range is too great, he will

use his M16. An 14203 engagement is represented by a red.

*line drawn from the observer to the impact point. This is

accompanied by a single explosion sound representing the

round launch. Next, a red circle will be drawn from the

impact point to the limits of the burst radius and an

explosion will sound. This represents round impact.

Direct fire engagements are represented by a red line

drawn from the observer to the target. A burst of sound,

representing the number of rounds fired, accompanies the

line. If the engagement resulted in a hit, SHOOT makes a

call to the impact subprogram and shows a "HIT Phit ###t"

message in the upper left corner of the screen. If the

engagement was a miss, SHOOT schedules a react to fire for

the target in three time units and displays the "MISS Phit

###" message.

Regardless of the outcome of the engagement, observers

have a 30% chance of reengaging a target in five time units

and a 70% chance of starting a new move and search cycle.

104

Determination is made br a random Uniifoarm (0,1) variable.

This accounts for shooters not always being able to tell

whether or not their engagement was successful. After

shooting, observers revert to their prior posture.

Limitations and Assumptions. SPARTAN's direct fire

engagement process has the following limitations and

assumptions:

1) All soldiers make perfect range estimation..

2) Wind effects on round trajectory are negligible.

3) iLinear interpolation of accuracy standard errors is
;sufficiently accurate for this model.

4) Rounds within a burst of fire are independent.

5) ýSoldiers will engage targets whenever they acquire
them.

6) 'Bullet flight is instantaneous.

7) 'observers do not check to see if squad mates are in
the line of fire. The assumption is that they
lwould move or fire around their squad mates.

8) SPARTAN only checks impact versus specified
!targets. Bullets that miss their intended target
disappear. They do not continue on to hit other
potential targets.

Indirect Fire Engagements

Unlike the original SPARTAN, the new version models

indirect fire systems. The system modeled in SPARTAN is the

U.S. Army's 60 millimeter mortar, which is found in light

infantry units. SPARTAN models two of these mortars.

Indirect fire is only available to the BLUE side and

can only be called by the squad leader. indirect fire

events are scheduled in the SELECT subprogram, whenever the

105

BLUE squad leader has detected two or more targets. The

mortars are located off the screen map at the coordinates

X=-500, Y=500 and can range the entire screen map. All

missions are inmnediate suppression missions. This means

that each of two mortars fires three rounds. There are no

adjust fire missions or repeat missions. Also, all rounds

are point detonating, no time delay or aerial burst rounds

are modeled.

There are two elements of randomness injected into

indirect fire events, target coordinate error and ballistic

error. Target coordinate error is caused by the squad

leader failing to give the target's actual coordinates to

the mortars' Fire Direction Center (the place where firing

data is computed). This error has a both a horizontal and a

vertical component and can be as much as 100 meters in

either direction. The coordinates given to the mortars are

computed by equations (23) and (24).

-xC nWe-xt+ triag(-1O0, O 00) (23)

.yOMU,, -y.+ triag(-lO0, 0,100) (24)

Once the rounds are fired, the ballistic error is

computed for each round. Each round has a ballistic error

with a vertical and horizontal component, which are randomly

drawn from triangular distributions. The modes of both

distributions are zero, with the range error being much

greater than the deflection error. In reality, mortar fire

is a function of tube elevation, charge, air density, round

106

/ type, and wind. SPARTAN simplifies all these errors to a

standard .04 milliradians range standard error and .01

milliradians deflection error. (These figures are actual

errors for a 4.2 inch mortar on charge 3.at 100 meters.) To

compute these errors I used equations (25) and (26).

Sezz~-rtriag(-. 08, 0, 08) (25)

erriri.ou- triag(-. 02, 0, .02) (26)

Because the mortars are located off screen and

perpendicular to the screen map's vertical and horizontal

planes, each rounds' impact point must be calculated using

"the trigometric functions (Equations (27) and (28):

xl. x -x,,+ (errmxS'N(O) + errxCOS(*)) xzange (27)

yi-y,*+ S(zzmxCOS) +errixSIN()) xrange (28)

THETA and PHI are the vertical and horizontal angles of the

gun-target line.

/ Once all rounds' impact points have been calculated,

SPARTAN employs the cookie cutter method to calculate the

probability of hit for all soldiers (friendly and enemy)

within the bursting radius (26 meters) of the rounds.

In SPARTAN's cookie cutter method, the coordinates of a box

containing all of the rounds' bursts are determined. Every

soldier within this box is declared a casualty. All

soldiers within 100 meters of this box are declared

suppressed (Figure 9).

107

in owage U ouwgMYcoYwu

~W 2. •ONWJNl* ^L NOM IMF*=• OO0MMTIVII

.Figure 9 Indirect Fire Casualty Assessment

SPARTAN Indirect Fire Process. The first step of

SPARTAN's indirect firing engagement subprogram (Figure 10),

INDIRECT, is to determine the grid coordinates of the target

that the BLUE squad leader sends to the mortars. SPARTAN

uses the grid location of the target selected for direct

fire by tho squad leader and adds error terms as described

above.

SPARTAN then draws a red line to the modified target

location from the left edge of the screen. This line

represents the gun-target line. SPARTAN then sounds six

explosions, these represent the launching of the rounds.

- SPARTAN then computes the impact point of each round

and plots the detonation on the screen. As impact points

are computed, the maximum and minimu vertical and

-" 108

- -!
. . /Vt 4¾

II
CASL U REAY TO WAL CMOMPT TO IR

INDREC IAON ADJUSTEOT

I •T 00RD 6

YE.

*UPP[RESS2OW•II

AL MPTE SOLDIE IDUALTRB SNW

Figure 10 Indirect Fire Process

horizontal coordinates are determined for use in calculating

the casualty and suppression boxes.

The casualty box is then dra~wn on the screen. The

corersof he ox are d•termine\dby adding 13.5 meters

(one-half of the burst radius) to\ the center of the maximum

and minimum impact coordinates. •PAkRTAN determines if any

soldiers are in this box or in the/ suppression box. An

appropriate message is shown on the screen. If casualties

are declared, INDIRPCT calls IMPACT ASSESSMENT. If

soldiers are suppressed, a REACT TO FIRE event is scheduled.

109

SON ROUDS =HTE

After this, the screen i3 refreshed to remove the

explosions and control of the program passes to the next

scheduled event.

Limitantions and AssumRtiong. The limitations and

assumptions of the indirect fire engagement process are

listed below:

1) Calls for fire are automatic when the BLUE squad
leader identifies two or more targets. There might
be instances when indirect fire might not be
desired.

2) Because mortar accuracy is dependent on so many
factors, I simplified the ballistic error.
Although the simplification is based on real data
(from another mortar type), it is not valid.
Mortars are area weapons however, and accuracy is
not a overwhelming issue.

3) The cookie-cutter method actually should be
employed for each impact, not the sheaf. This
simplification was for ease of computation, but
still effectively demonstrates the technique.

Impact Assessment

Impact assessment (Figure 11) is not a scheduled event.

As SHOOT or INDIRECT subprograms assess a target as being

hit, IMPACT is called and the target is innediately assessed

as being either killed or wounded. After appropriate

attribute updates are made, control then returns back to the

SHOOT or INDIRECT subprogram.

Unlike the previous version of SPARTAN, the results of

being hit by fire depend on the target's previous status.

If the target was unwounded, he has a 30% chance of being

killed and 70% chance of being wounded. If the target was

already wounded, then his chances of being killed increase

110

Yigu e w Imact eo

to 50%. The determination of casualty type is made by a

random draw from the Uniform (0,1) distribution.

If the target is declared to be wounded, his wound

status is updated and he is put in a prone nonmnoving status.

If the target is killed, his wound status i, updated, he is

put in a prone nonmoving status, his icon is changed to a

grey color, and all of his scheduled events are pulled from

the event calendar.

If a killed target is a squad leader, then a change of

coummand is affected. SPARTAN searches for a designated team

leader and updates his position attribute to reflect that he

111

.A

is now a squad leader.

There are a few assumptions and limitations associated

with this process:

1) Once a target has been wounded, his ability to
absorb punishment does not change. Ris chance of
being killed remains at 50%.

2) Although dead soldiers are prone and nonmoving,
they can still be engaged. Observers do not
discern between alive, wounded, and dead targets.

3) Impact assessment is obviously a function of weapon
type and impact point. The probabilities of
outcomes referenced above are not based on any
valid data.

React to Fire

Reaction to fire is a scheduled event in SPARTAN. It

is scheduled for three time units after a direct fire or a

indirect fire event results in a miss. Soldiers react to

fire in a stochastic manner, depending on their current

status.

Table 9 Reaction to Fire Probabilities

CURRnT POS TURE REACT ION
Standing Crouch Pr a .5

Prone Pr a .2
Prone/nonmoving Pr a .1
so Chanqe Pr a .2

Crouching Prone Pr a .4
Prone/nonmoving PrC .1
No Change Pr a .5

Prone Prone/nonmoving Pr a .5
No Change Pr a .5

MOTE: Unless the reaction specifies a move status,
the target's move status is unchanged.

212

Reactions are decided by a random Uniform (0,1) variable.

The values assigned to the reaction probibilities are not

based on valid data, but seem plausible for the given

tactical situation.

If the targeted soldier is a squad leader, then his

entire squad emulates his reactive posture and move status.

This is in line with the "follow me and do as I do" command

the squad leader gives to his squad.

Chanae Formation and Direction

The last type of scheduled event in SPARTAN is the

formation and direction change. This event is scheduled

during the SELECT target subprogram, whenever a squad leader

selects a target. The thought process behind this event is

that the squad leader might want to evaluate the worth of

changing the formation and direction of movement of his

squad to bring more firepower to bear on the target that he

perceives as being most dangerous.

Chance Formation/Direction Process. The first function

of the DIRECTION subprogram (Figure 12) is to assess whether

a formation and direction change is warranted. SPARTAN does

this by determining the observer-target angle from the squad

leader to his target. If this observer-target line is less

than 25 degrees off the current azimuth of travel, only a

formation change is directed. In this case, all soldiers'

position attributes are updated to reflect the new

formation. If the difference between these angles is

113

- / .7 . --Z

W! QUDIFEENCEOw

Figre 12 Changing Direction and Foration Process"

greater than 25 degrees, then the direction of all the

soldiers on the squad leader's side are changed to the

azimuth of the observer-target line. & formation change is

alsc• directed. A message reflecting the side and formation

change is shown the upper left screen corner. The new

frotation is Wsquad on line, teams in wedges". This

formation allows all soldiers to bring fire to bear on the

squad leader'ts target.

kfter a formation and direction change, a flag is

tripped and the squad leader must once again search for wire

obstacles in his new direction. Also, the obstacle breached

flag is tripped and any obstacles that the squad encounters,

must be breached.

114
O 7.-

'4 .~- K-' ,' ~ 2' k

Limitations and AssuMptions. There are several

limitations and assumptions associated with the logic of

this process:

1) Location changes are instantaneous. Graphics are
not updated to reflect location changes. During
the next MOVE event, soldiers might move more than
20 meters. This is not unrealistic as
soldiers must run to adjust formations in real
life.

2) Squads sometimes change formations during breaching
operations. Because they are in a nonmove status,
a REFRESH is scheduled.

3) As ranges close, squads change direction more
frequently as squad leaders select targets that are
on opposite sides of the enemy formation.

Command and Control

SPARTAN has no specific subprogram designed for

modeling command and control. instead, the entire

simulation was designed to reflect the realities of small

unit combat and the control that the squad leader asserts

- ~. over his squad. Thus, command and control logic-and

* limitations were imbedded in all SPARTAN processes..

The squad leader dictates movement speed and direction

for his squad. This models the formation movement that

small units maintain and the fact that the squad leader

controls the formation.

The squad leader directs formation changes based on his

perceptions. He also is the one with the radio and thus has

the capability for calling for fire. The call for fire in

contingent on the squad leader's acquiring multiple targets.

115

The squad leader also controls how his squad moves. If

the squad leader reacts to fire by hitting the prone

position and ceasing movement, then his entire squad does

also.

In this chapter, I have outlined the methods that

SPARTAN uses to model various combat processes. The intent

was to provide a sufficient, level of detail for the reader

to gain a understanding of the equations involved in the

processes, the algorithms and decisions made in the

procesbes, how the processes interact, why a particular

technique was chosen for implementation, and some of the

limitations and assumptions of the processes.

ChaDter V. Conclusion

Introduction

This chapter concludes the SPARTAN thesis. The first

section summarizes the purpose and results of the thesis

work. This is followed by a list of suggested improvements

to SPARTAN.

Summary

This thesis effort was aimed at improving SPARTAN, a

high resolution land combat model demonstrator, and making

it a more useful tool for land combat modeling courses.

Altbough the list is not exhaustive, the major improvements

of this version of SPARTAN over the original are listed

below:

1) Greater terrain detail. Forested areas are
incorporated in the new SPARTAN. They affect
movement and target acquisition.

2) Obstacles. The old SPARTAN did not have obstacles.
The current version allows the user to input one
linear obstacle.

3) Movement. The movement of entities is now tied to
formations. The rate of movement and placement of
soldiers is determined by the squad leader. Also,
the squad leader can alter the formation and
direction of travel based on his target selection.

4) Target acquisition. The acquisition process more
closely resembles the EVEOL process used in the
Army's current generation of high resolution combat
models.

5) Weapon's data. Weapon's accuracy data is from the
Army Material System's Analysis Activity (AMSAA)
and is the same data used by JANUS and CASTFOREM.

117

6) Weapon types. SPARTAN now has a default weapons'
mix of fiv, different weapons, all currently used
by the U.S. or Russia.

7) Indirect fire. SPARTAN now also models indirect
fire, both mortars and grenade launchers.

8) Command and control. Command and control is
modeled in greater detail than in the previous
version.

9) Reaction to fire. Soldiers' reaction to fire is
modeled in greater detail and more realistically
than in the previous version.

10) Preprocessor. The Preprocessor is much more user
friendly. It not only allows the user to view
data and alter it for noi. scenarios, but also
serves as an instructional tool for terrain
modeling and for terrain familiarization.

11) Graphics. Graphics are grettly improved over the
previous version. The screen battlefield resembles
a map, which improves comprehension of model
activities. Also the icons and entity activities
are more clearly delineated, improving
understanding of model activities.

In making these improvements, the objectives of

portability, usability, simplicity, and applicability guided

all modeling decisions.

----SPARTAN is portable. Written in-QuickEASIC and then

compiled, its data files and two executable programs total

less then 500 K. Thus, it can be carried on all high

density disks and can be used on most IBM/IBM clone

computers.

SPARTAN is usable. Users of SPARTAN need only minimal

knowledge of computers and modeling techniques and no

knowledge of infantry tactics. The preprocessor and

simulation are designed to teach them about the former

118

subjects. The menu format also facilitates use by less

knowledgeable individuals.

SPARTAN is simple. QuickBASIC reads almost like

English, thus SPARTAN's computer code is very easy to

understand. Also, the structured programming makes

following model'processes easy. The structured programming

also makes the possibility of future improvements more

likely.

SPARTAN is also applicable. All processes were modeled

on techniques used in the current generation of high

resolution land combat models.

The result of meeting the design objectives and the

improvements listed above was a model which demonstrates the

following:

1) Time keeping and an implementation technique for
event set management and synchronization.

"2) Algorithms used to model movement, target
*\ acquisition and detection, target selection, weapon

selection, weapon accuracy, direct and indirect
fire attrition, line of sight, reaction to fire,
and simple command and control decisions and
processes.

3) Stochastic techniques for representing the
occurrence of random events and outecomes on the
battlefield.

4) Data requirements for model components.

5) An example of the components for a typical combat
model such as scenario input, a preprocessor, the
simulation model, various types of output, and
accompanying documentation.

119

- . * -" / .. . v - • -• ' .

S• .- - ./. . ' . . • - • . , .. _.

Recommendations

Although SPARTAN is a finished model and is capable of

being employed for its intended use, there are several

improvements that could be made to further enhance itsz value

an a learning tool. Because of the structured programmuing

design of SPARTAN and programming language (QuickBASIC),

making these improvements should be an easy task. Some of

these suggested improvements are:

1) Design a replication loop. Although designed as an
anlalytical model, SPARTAN currently only executes a
simulation once. Building an outer replication

-' loop, with the capacity to store data from each
simulation run, could improve its value for
simulation study.

2) Improve the movement process. Most high resolution
models use movement control points to
direct movement. SPARTAN entities only change
direction in engagements. Implementing a movement
control point type process would enhance
scenarios.

3) Incorporate some sort of user interaction. Allow,
users to direct formation changes or direction
changes.

4) Design more terrain data bases. This involves
drawing the map and filling in the terrain data
array. The user could pick a terrain option in the
preprocessor.

5) Allow users to alter acquisition tables in the
preprocessor. Allow the user to alter the
sky-ground brightness ratios and target background
contrasts to simulate limited visibility
conditions.

6) Increase the number of entities allowable in order
to simulate entire squads on both sides.

7) Incorporate indirect fire for both sides.

8) Incorporate vehicles in the simulation (and also
anti-vehicle weaponry).

120

9) If user interaction is incorporated, use hidden
icons. Do not display REiD icons until they are
acquired by BLUE soldiers.

This is only a partial list of recoummended

improvements. There are many possible ideas, but the

original scope of the modeling project was lim'ited to

producing a teaching tool, not a new video game.

ConcD~ionf

This modeling effort provides the military modeling

community with a high resolution land combat model

demonstrator. Following the model development process as

outlined by Pritsker, a model was developed that is simple,

usable, portable, and applicable. By using SPARTAN with its

algorithms based on those used in the current generation of

high resolution models and its extensive help files and

other documentation,. beginning modelers should gain a great

deal of insight about the uses and limitations of combat

models.

121

A&Dendix A: Threshold Pinf To

This appendix contains the template used for creating

the threshold probability of detection given infinite time

to observe the target area. The technique of assigning such

observer-target threshold values is used by both JANUS and

"CASTFOREH. Using this technique, each possible observer-

target pairing is assigned a random threshold level of Pinf.

This is then compared to the deterministically derived

actual Pinf to see if the target is giving off significant

signature to be detected by that observer. This template

was written using MATHCAD 2.5 software. It shows the

calculations used to create the random cor level and then

displays a partial array of threshold Pinf values.

122

'7

/ I-

This MATHCAD template computes the random threshold Pinf

value for every observer targst pair. It uses the triangle
distribution function to simulate the normal population called

for by JANUS documentation (17:25-27).

JANUS assigns a random threshold Pinf value to each
observer-target pair, u.-ing a lognormal distribution
whose underlying normal distribution has a mean of 3.5 and a
standard deviation of .698 (17:28). To replicate this
normal distribution, I use a triangle function with a
mode of 3.5, a lower bound equal to two standard diviations
below the mode (2.1) and an upper bound equal to 4.896.

i and j are the indices i := 1 .. 12 J := 1 .. 12

a is the lower bound a : 2.1

b is the upper bound b " 4.896

d is the mode d :3.5

Since SPARTAN has 12 soldiers, there are 132 possible
observer-target combinations. For ease of matrix
manipulation, I will round out the matrix to 144 (12 rows
and 12 columns).

r is the 12 x 12 matrix of random Uniform (0,1) variables

r := rnd(1)
i,J

Now define some relations of the upper and lower bounds and

the mode.

e = mode - lower bound e := d - a

f = upper bovnd - lower bound f := b - a

g = upper bound - mode g := b - d

Next assign random numbers from the triangle distribution

123

function (based on the previously assigned random U(0,1)
variable) to the x matrix (12 x 12):

:= if -1 - -,a + [f'r ,b - [f -r
[,JlJ f L, ,

Since the random threshold is a lognormal variable,
substitute the exponential function of the random triangle
distribution.

x

XX12(iJt

This matrix becomes the matrix threshold cor values for
condition A of target acquisition.

To test the distribution, I plotted a histogram of the

threshold values.

X2 := sort(X)

Sk is the number of hisotgram cells

k a (1 + 3.3'log(144)) k = 8.123

Since k) 8, I round it up to 9 k :m 9

c defines the histogram cell width

max(X) - min(X) f
C :m = 0.325 -S 0.35

k8

k :m 1..9

intervals : 2.1 + c'(k - 1)
k

f : hist(intervalsX2) f : 0

19

124

(_ _ ", .

Histogram of Threshold COR values

40 mean(X) = 3.292

.5
1441

[var(X)" _ - 0.585
IV 143].

f

k

0 1 n
2 intervals 5

k

This plot looks like a lognormal plot.

Remember that the mean number of resolvable cycles for
detection at any range is 3.5. The mean of 3.292 is pretty
close to this. Also the Standard E-ror of .585 is close to
the standard error .698

Now transfer the random cor values into a 12 x 12 matrix

x "-X

1j 12"(i-1)+J

125

To save time in the simulation, transfer the cor values
into Pinf values using the equation below:

tJ

2.7+.7 -

3.5

pinfl
tJ x

i.J
2.7+.7 -

3.5
x

This Pinf table becomes the threshhold level that observers
must exceed In order to meet condition I of the acquisition

process.

Below is listed one column of threshold Pinf values:

pinf1
i .1

o0.164
0.18
0.627
0.431
0,431
0.543
0.42
0.261

0555
0,253
0,301

.51 ,

126

I

Appendix B: Probability of Acquisition Template

This appendix contains the template used to create the

cycles resolvable by the observer tables and the probability

of detection given infinite observation time '2inf) tables.

All calculations are based on techniques used in the NVEOL

model as employed by JANUS and CASTFOREM. The appendix goes

through the calculations and assumptions and then shows the

cycles resolvable table and the Pinf table for targets not

in wooded areas.

A

1

127

/

/

The following MATHCAD 2.5 template computes the acquisition
tables using the NVEOL model algorithms. There are
three conditions for target acquisition:

1) The target Is giving off sufficient signature for
the observer to detect him.

2) The observer has line of sight to the target.
3) The observer is looking at the target during the

specified search cycle time.

This template computes tables for use in calculating
meeting Condition I i.e. cycles resolvable by the observer
and the Pinf (probability of detection given unlimited time
to look at the target). To save computation time in the
simulation, these values are computed in increments of 100
meters.

I. Attenuated Target Contrast

The first step of the NVEOL target acquisition model is
to identify the range and the attenuated target contrast.
The latter is a function of target-background contrast,
sky-ground background contrast, range, and an atmospheric
I is defined as the array location pointer I :- I .. 10

r is the array of ranges from 100m to 1000 m (in km) r :-

1 10

Now calculate the attenuated target contrast using the
equation (17:26):

targetcontrast
attenuatedcontrast :a e1)

SI + 2.5'(exp(r' .01) - 1)

where 2.5 is the sky-ground background contrast for a
bright day. The JANUS documentation did not provide a~y
values for the atmospheric attenuation coefficient, so
after experimentation, I used the value .01.
Target contrast values range between .2 and .3. I used .3
for targets in wooded areas and .29 for targets not in,

wooded areas.

128

;-----------------,-,

acl is the target attenuated contrast for targets in wooded
terrain.

.3
ac :=

1 1 + 2.5 * eXP [r * Oil1]

ac2 is the target attentuation contrast for targets not in
wooded terrain

.29
ac2 :=

i 1 + 2.5. expr ,.01] I 1

These equations result in the attenuated target contrasts
below:

Target in wooded area Targst not in wooded area
0.299 .289
0.299 0.289
0.298 0.288
0.297 0.207
0.296 0.286

acl = 0.296 ac2 - 0.286
0.295 0.285
0.294 0.284
0.293 0.284
.0.293 .283.

II. Cycles Resolvable by the Observer

The cycles resolvable by the observer is a sixth degree
polynomial function of the attenuated contrast, the range
(in km) and the minimum target dimension. First compute
the sixth degree polynomial:
k := 0 . .5

corl := In acli] This gives the cycles per
i L i [milliradian for targets not in

k wooded areas.

129

-'- -"~ ' • •- , -

cor2 [c 6-k] This gives the cycles per
cor2 := ncmilliradian for targets in

i iwooded areas.
k

To get the actual cycles resolvable, the numbers computed
above must be multiplied by the minimum target dimension and
divided by the range. This gives cycles per target
dimension by range.

target posture height width minimum dimension
standing 1.8m ,8m .8m
crouching .9m .am .8m

prone .45 .am .4Sm

Remembering the heuristics of doubling the dimension if the
target has fired during the last 20 time units or 13 moving
the target posture array becomes:

tgtpos :(.8 .45 1.6 .9)

Now finish computing the tables of cycles resolvable
by the observer:
j. : 1 ..4

1 1

corl :- corl eor2 := cor2
i r i i r I

T r

corla :- corl~tgtpos
cor2a :- cor2"tgtpos

Now we have the tables for cycles resolvable by the observer
for various ranges and target postures.

130

Cycles resolvable on a target in a wooded area:

Standing Standing
POSTURE Crouch Prone Crouch Prone Range

9.116 5.128 18.231 10.255 lOOm
4.646 2.614 9.293 5.227 200m
3.157 1.776 6.314 3.552 300m
2.413 1.357 4.826 2.715 400m
1.967 1.106 3.934 2.213 500m

corla - 1.67 0.939 3.339 1.878 600m
1.458 0.82 2.915 1.64 700m
1.299 0.731 2.598 1.461 800m
1.176 0.661 2.351 1.323 900m
1.077 0.606 2.154 1.212 0O00m

The last two columns designate target who have Just fired or
are moving.

Cycles resolvable on a target not in a wooded area:

Standing Standing
Posture Crouch Prone Crouch Prone Range

11.701 6.582 23.402 13.163' lOOm
5.954 3.349 11.907 6.698 200m
4.038 2.272 8.077 4.543 300m
3.081 1.733 6.163 3.467 400m
2.508 1.411 5.015 2.821 SOOm

cor2a = 2.125 1.196 4.251 2.391 600m
1.853 1.042 3.705 2.084 700m
1.648 0.927 3.297 1.854 800m
1.49 0.838 2.979 1.676 900m

1.363 0.767 2.726 1.533 lO00m

These numbers look reasonable, despite the educated guesses
on several coefficients. (The average cor for
target identification is 3.5.)

III. Computing Pinf

The last step is to calculated Pinf, the probability
of target detection given unlimited time to search for the
target. This is only shown for targets not in wooded
areas:

131

/ . .

cor2a

2.7+.7,

iJ cor~a

33.5

corr~a

This gives us the results below:

Standing Standing
Posture Crouch Prone Crouch Prone Range

0.998 0.927 1 0.999* loom
0.888 0.463 0.998 0.932 200m
0.623 0.204 0.974 0.719 300M
0.396 0.105 0.902 0.492 400m
0.256 0.062 0.791 0.331 500m

pinf2 -0.174 0.041 0.666 0.23 600M
0.124 0.029 0.549 0.166 700m
0.093 0.021 0.45 0.124 800m

A0.072 0.016 0.37 0.097 900M
0O.057 0.013 0.308 0.077j 1000m

This data was fed into the Pinf tables INFW.dat and
INFNW.dat (for INFinte in the Woods and INFinte Not in
the Woods).

132

ADDendix C: Probability of Hit Template

This appendix contains the template used to create

probability of hit tables for all direct fire weapons

modeled in SPARTAN. Weapons' data is based on actual firing

data obtained from the Army Material System's Analysis

Activity (AHSAA). The technique uses the Polya-Williams

approximation and the negative binomial function to derive

probabilities of hit for various ranges. This appendix

shows the raw accuracy data, demonstrates the calculations,

and shows the final hit probabilities for all weapons

systems.

133

I", ! ' . " , -,- , -:, , - •--- - " ... "- ,. :
• " " -- ' " . . . " • ' . -. -. -. . ,.

The following MATHCAD 2.5 template computes the orobability

of hit for a multi-round burst of fire using M16A2 accuracy
data.

I.' Background

To compute the multi-round probability of hit for a
K. burst fire weapon, I used the Polya-Williams Approximation

suggested by Hartman in his unpublished lecture notes on High
Resolution Modeling.

The Polya-Williams Approximation assumes the target is
rectangular and is perpendicular to the gun-target line. It
also assumes the impact distribution is bivariate normal with
the means of the dispersions (both vertical and horizontal)

Sand the bias equal to zero. Using it the Pr(hit)
is (13:7-18):

Phit := a

where 2
Lx

-2,
2

* x

X :1 - e 0 (2*Lx - width of target)

2

Ly

2

y
"Y := 1 - a 0 (2*Ly * height of target)

and ax and ay are the standard errors (dispersions) in the

Horizontal and Vertical directions.

II. Data

Data for all weapons systems is from the U. S. Army Material

134

------- ---.

Systems Analysis Activity (AMSAA). All data is from man-in-
the-loop tests. Both firers and targets were stationary.
Firers shot from the prone unsupported position, then data about
dispersions of impacts from center mass aim points was
collected. The M16A2 data is presented below:

Weapon Type: M16A2
Round: M855 Ball
Ranges: 25, 50, 100, 200, 300, 400, 500, 600 meters

PRONE UNSUPPORTED POSITION

DISTANCE BALLISTIC ERROR AIM ERROR
HORIZONTAL a VERTICAL a HORIZONTAL a VERTICAL a

25 m 7.85 mils 8.98 mils 12.00 mils 12.00 mils
50 m 7.85 mils 8.98 mils 7.2 mils 7.2 mils
100 m 7.85 mils 8.98 mils 4.7 mils 4.7 mils
200 m 7.85 mils 8.98 mils 3.5 mils 3.5 mils
300 m 7.85 mils 8.98 mils 3.1 mils 3.1 mils
400 m 7.85 mils 8.98 mils 2.9 mils 2.9 mils
500 m 7.85 mils 8.98 mils 2.8 mils 2.8 mils
600 m 7.85 mils 8.98 mils 2.7 mils 2.7 mils

To make accessing the probability of hit tables easier,
I extrapolated the accuracy data so that hit probabilities
are in increments of 100 meters from 100 to 800 meters.

This results in the dispersion table below:

SPARTAN M16A2 accuracy data

DISTANCE BALLISTIC ERROR AIM ERROR
HORIZONTAL a VERTICAL a HORIZONTAL a VERTICAL a

100 m 7.85 mils 8.98 mils 4.7 mils 4.7 mils
200 m 7.85 mils 8.98 mile 3.5 mils 3.5 mils
300 m 7.85 mils .98 mils 3.1 mils 3.1 mils
400 m 7.85 mils .98 mils 2.9 mils 2.9 mils
500 m 7.85 mils .98 mile 2.8 mils 2.8 mils
600 m 7.85 mils 8.98 mils 2.7 mils 2.7 mile
700 m 7.85 mils 8.98 mile 2.6 mile 2.6 mils
800 m 7.85 mile 8.98 mile 2.5 mile 2.5 mils

135

S-- --- -_ . :--

S7i>

III. Calculations

The first step in computing the Phit is to define the arrays
of input data:

100 7.85 8.9a 4.7
200 7.85 8.98 3 ' 5
300 7.85 8.98 3.1
400 7.85 8.98 2.9

range := 500 rbalx := 7.85 crbaly := 8.98 cTaimx :=2.8
600 7.85 8.98 2.7
700 7.85 8.98 2.6
8oo0 7.85 L.98. R 8.s

aaimy := aaimx

Next, compute total error in the horizontal and vertical
directions using the (quation below:

2 2 2
r :=~ 0 +

aim bal

At the same time, convert the variance in milliradians
to meters.

One milliradian deviation is equal to one meter of
error from center target at 1000 meters. Therefor
to convert mils to meters, multiply mils by km.

We now compute the total variance
1 :-1 .. 8

2 2r range rrange~ total
101gem variance in

o2x a balx + aimx the horizontal
1 1000 1 1000J direction for

each range.

136

2 2
range range = total

100 0 variance in"•'Ia~y:= aly -- '+ aaimy -- the vertical

1 1 1 1000 direction foreach range.

The standard error in meters at different ranges is

Horizontal Error Vertical'Error

'~2xRange a2y
iX i

0.915 lOOm 1.014
1.719 200m 1.928
2.532 300m 2.85
3.347 400m 3.775
4.167 500m 4.703

A 4.981 600m 5.626
5.789 700m 6.544
6.591 800m 7.457

Assume that targets (personnel) are rectangular and
approximately .8m X 1.8m. There are three target postures:
standing, crouching/kneeling, and prone. The width of the
target will not change based on target posture, but the
height will. The height factors are:

1 standing
1: 1 .. 3 posture : Crouching

1.251 Prone

Now compute our X values. Since

width := 2Lx 0 where width .8

Define Lx := .4

Using the Polya-Williams approximation:

137

/.. .: : - • ., . .- . .-, .-

2

7 Lx
-2'

Tr o2x
I

X :=1-e
i

:'• C0.1151

0.034
0.016
0.009

X= 0.006
0.004
0.003
,0.002.I

Now compute the Y values. There will be three Y values
at each distance because of target posture. Given the
target height (y) is 1.8m, we get the following values
for Ly at various postures and ranges:

stand crouch prone
1.8

Ly := posture 0.9 0.45 0.225
iJ 2 J 0.9 0.45 0.225

.0.9 0.45 0.225
0.9 0.45 0.225

Ly " 0.9 0.45 0.225
0.9 0.45 0.225
0.9 0.45 0.225
.9 0.45 0.225

Using the Polya-Williams approximation:

138

2
Ly

iii

-2'
Tr c2y

Y e

ij

Now the Y values are computed, compute the single round Phit

Target stand crouch prone Range
Phic := X Y Posture 0.213 0.116 0.059 lOOm

ij I i,J 0.066 0.034 0.017 200m
0.031 0.016 0.008 300m
0.018 0.009 0.005 400m

Phit = 0.012 0.006 0.003 500m
0.008 0.004 0.002 600m
0.006 0.003 0.002 700m
0.005 0.002 0.001 800m

Now, assume the rounds of the burst are independent and
compute the probability of at least one hit given multiple
rounds fired in the burst (3 rounds for the M16A2)(10:20-14)

3

p3hit :=1- [-Phit 1

This results in the table below, which is used by
SPARTAN to determine hit probability for the M16A2 (firing a
three round burst) for various ranges and target postures.

Target stand crouch prone
Posture 0.512 0.31 0.168" lOOm

0.186 0.099 0.05 200m
0.091 0.047 0.024 300m
0.053 0.027 0.014 400m

p3hit = 0.034 0.017 0.009 50Cm
0.024 0.012 0.006 600m
0.018 0.009 0.005 700m
0.014 0.007 0.003 800m

139

/

IV. AK-74

Using the same method as for the M16A2, I computed the
multi-round probability of hit for the Russian AK-74

Weapon Type: AK-74

SRound:
5.45mm

Ranges: 25, 100, 200, 300, 400, 500, 600, 700, 800 meters

PRONE UNSUPPORTED POSITION

DISTANCE BALLISTIC ERROR AIM ERROR

HORIZONTAL a VERTICAL a HORIZONTAL a VERTICAL a
25 m 8.47 mils 8.9 mile 12.0 mile 12.0 mile
100 m 8.47 mils 8.9 mile 4.7 mile 4.7 mile
200 m 8.47 mile 8.9 mils 3.5 mile 3.5 mils
300 m 8.47 mils 8.9 mile 3.1 mile 3.1 mile
400 m 8.47 mile 8.9 mile 2.9 mile 2.9 mile
500 m 8.47 mils 8.9 mile 2.8 mile 2.8 mile
600 m 8.47 mile 8.9 mile 2.7 mile 2.7 mils
700 m 8.47 mile 8.9 mile 2.6 mile 2.6 mile
800 m 8.47 mile 8.9 mile 2.6 mile 2.6 mils

Dropping the 25m data, this data resulted in the table of

hit probabilities below (for a three round burst):

TARGET POSTURE STANDING CROUCHING PRONE
RANGE

lOOm .493 .297 .161
200m .176 .093 .048
300m .086 .044 .022
400m .05 .025 .013
soom .032 .016 .008
600m .023 .011 .006
700m .017 .009 .004
boom .013 .007 .003

140

IV. M249 and RPK-74 (Squad Automatic Weapons)

Using the same method as for the M16A2, I computed the
multi-round probability of hit for both US and Russian SAWS
(they both had the same accuracy data).

Weapon Type: M249 (US) and RPK-74 (Russian)

Round: 5.56mm and 5.45mm
Ranges: 50, 300, 600, 900, 1200, 1500, 1800, 2100 meters

BIPOD SUPPORTED POSITION

DISTANCE BALLISTIC ERROR AIM ERROR
HORIZONTAL r VERTICAL a HORIZONTAL q VERTICAL o

50 m 1.27 mils 1.41 mils 7.1 mils 7.1 mile
300 m 1.27 mils 1.41 mils 3.1 mils 3.1 mils
600 m 1.27 mils 1.41 mils 2.7 mils 2.7 mils
900 m 1.27 mils 1.41 mile 2.6 mils 2.6 mils
1200 m 1.27 mils 1.41 mils 2.5 mils 2.5 mils
1500 m 1.27 mils 1.41 mils 2.5 mils 2.5 mile
1800 m 1.27 mils 1.41 mils 2.4 mils 2.4 mils
2100 m 1.27 mils 1.41 mils 2.4 mils 2.4 mils

Because SPARTAN only models a maximum range of 1000 meters,
I interpolated for shorter ranges and dropped longer ranges,
giving the altered accuracy data below:

DISTANCE BALLISTIC ERROR AIM ERROR

HORIZONTAL a VERTICAL a HORIZONTAL a VERTICAL a
100 m 1.27 mils 1.41 mile 6.1 mils 6.1 mile
200 m 1.27 mile 1.41 mils 4.1 mils 4.1 mils
300 m 1.27 mils 1.41 mile 3.1 mile 3.1 mils
600 m 1.27 mils 1.41 mile 2.7 mile 2.7 mile
900 m 1.27 mils 1.41 mile 2.5 mils 2.5 mils
1000 m 1.27 mile 1.41 mils 2.5 mile 2.5 mile
1800 m 1.27 mile 1.41 mile 2.4 mile 2.4 mils
2100 m 1.27 mils 1.41 mils 2.4 mile 2.4 mils

141

• \ I

This results in the probability of hit table below (six

round burst):
TARGET POSTURE STANDING CROUCHING PRONE

RANGE
lOOm .958 .828 .581

200m .826 .603 .368

300m .725 .488 .283

600m .34 .19 .1

900m .189 .1 .051

lO00m .156 .082 .042

1800m .055 .028 .014

2100m .04 .02 .01

142

Awyendix D: SPARTAN Operatino Instructions

General

This appendix is a user's manual for SPARTAN and can be

used (in conjunction with the SPARTAN and STARTUP help

screens) to run the SPARTAN simulation. This manual and the

HELP screens are designed for use by students who have at

least a limited knowledge of IBM PCs and high resolution

land combat modeling.

SPARTAN is a two-sided high resolution land combat

model originally developed by Army CPT Dave Cox (AFIT GOR92-

M) as an instructional tool for use in a land combat

modeling course. It is intended to demonstrate current

modeling techniques as used by the Army's present generation

of high resolution land combat models. All algorithms and

most of the data are representative of those used by the

Army's two premier models, JANUS and CASTFOREM. Tactical

formations, weapons' mixes and accuracy data, and decision

rules are as accurate and realistic as the author could make

them based on ten years of infantry experience and current

Field Manuals. SPARTAN, however, makes no claim as to being

a true replication of reality. In keeping with the intended

purpose of the model, decision rules are simplistic and time

representation is adjusted so the model looks right. No

effort has been make to perform any validation of SPARTAN as

an analytic tool.

143

This User's Manual is organized into four sections.

Section I is a discussion of SPARTAN construction and

modeling processes. Section II includes a discussion of the

default scenario and the existing default data files.

Section III contains operating instructions for STARTUP (the

preprocessor). Section IV provides operating instructions

for the model. More information about these topics can be

obtained through the HELP screens in the preprocessor and

SPARTAN and in the SPARTAN thesis.

Section 1. Model Descriition

SPARTAN is designed primarily like an analytical model

of a force on force conflict. The combat is between two

opposing squad sized elements in a 10O0m x 1000m area. The

conflict taken place in rolling terrain that is primarily

open, but that has some forested areas. The combat is

during daylight and obscuration is not a factor'.

SPARTAN represents the following combat processes:

movement, target search, target selection, weapon selection

and direct fire engagement, indirect fire engagement,

reaction to fire, impact assessment, commnand and control,

and obstacle breaching. All processes are resolved at the

individual soldier level. No processes are aggregated.

SPARTAN allows human participation in only two places,

the preprocessor, where the user can alter data files to fit

his scenario, and in the terminating conditions, which the

user can alter before beginning the simulation run. once

144

the simulation begins, no user action impacts on model

outcomes.

SPARTAN uses an event scheduling technique to

synchronize activities and maintain time representation

within the model. Future events are maintained on the event

list which lists the events by type, actor, and time (time

being a generic time unit not related to minutes or

seconds). Only nine types of events are put on the

calendar, these are listed in the table below:

Table 10 SPARTAN's Scheduled Processes

NUMBER EYE 1
1 Target Search
2 Target Select
3 Direct Fire Engagement
4 Move
5 End Breaching Operation
6 React to Fire
7 Change Direction and Formation
a Refresh the Screen
9 Indirect Fire

All other events are instantaneous (the simula ion clock

does not advance when they are occurring). SPARTAN does not

use linked lists to keep track of calendar events. As a

scheduled event is completed, SPARTAN checks the calendar

for the next event with the lowest start time and executes

that event (after showing a message as to current simulation

time, event type and event actor in the upper right corner).

SPARTAN continues to schedule and execute events until the

event list is empty or one of the terminating conditions is

met.

145

One modification to this event step process allows

users the option of letting the simulation execute as fast

as the computer can process events or delaying event

processing by setting the ratio of simulation time to clock

time (to a maximum of 1 to 5). This option can be turned

off by altering the terminating conditions.,.

Fo~rce Composition. SPARTANI models a maximum of 12

soldiers divided into two sides, RED and BLUE., Soldiers on

the screen are represented by stick figures of the

appropriate color. Squad leaders of either side are denoted

by a box drawn around the figure. Soldiers' capabilities

and status are captured by the 15 attributes in the soldier

file (see Section III for a complete list of soldier

attributes). The default scenario has 9 BLUE soldiers

organized and o'quipped as U.S. infantry and three RED

soldiers organized and equipped in the old Soviet style.

organization and weapons are listed in Table 11.

Table 11 Default Force Composition

Squad Leader 1416A2 AK-74
Team Leader 2 x b116A2 AK-74
Automatic Rifleman 2 x 14249 RPK-74
Grenadier 2 x M4203
Rifleman 2 x 1416A2

In addition to the squad's organic weapons, the BLUE side

has the advantage of the use of two 60umm mortars. These

mortars are not represented on the screen and are notionally

located off the screen map.

146

Terrain Representation. The terrain used in SPARTAN is

i one kilometer square area loosely based on a U.S.Army

1:50,000 scaled map of Germany. Terrain is represented by a

50 x 50 system of square grid cells. Each cell has a

horizontal (east-west) coordinate and a vertical (north-

south) coordinate numbered from 1-50. Each cell also has an

elevation, a mobility factor, and a visibility factor.

These attributes allow the model to represent terrain relief

features and to adjust movement and target detection.

The SPARTA11 screen is read just like any military map.

The lower left corner is GRID 000 000 (read X coordinates

first and Y coordinates second) and the upper right corner

is GRID 1000 1000. Magenta lines are spaced every 200m to

aid in distance referencing during the simulation. (These

lines might not appear to be square because of how different

monitors and computer models oareak down horizontal and

vertical resolution.) The colors on the map are those used

on military maps (Table 12).

TABLE 12 MAP COLOR TRANSLATION

Blue water
Green forests, wooded areas
Red manmade objects (roads)
Black roads
Brown Contour intervals

147

The contour interval for this map is ten meters.

Elevations range from 60 to 110 meters. To provide more

realistic representation of terrain, mobility, visibility

and elevation are not constant in like areas. For example,

visibility and mobility decrease as you go deeper into

wooded areas and elevation rises as you get closer to next

higher contour interval. Roads and streams have no impact

on movement and are only'provided for user reference.

Movement. When a soldier's attributes are set for

movement, he will move in a direction and speed designated

by his squad leader. All moves are in 20m increments, with

the movement time for these increments varying with soldier

posture and the mobility factor of the terrain cell in which

the movement starts. The squad leader designates the

movement speed for his entire squad.

Search. SPARTAN uses a continuous search process based

on the Night Vision Electro-Optical Laboratory (NVEOL) model

used by JANUS and CASTFOREM. In SPARTAN this is a

continuous process, with every soldier conducting a 360

degree search every 20-40 time units. Soldiers search only

for enemy soldiers, therefore there is no need for

identifying friends or foes.

In order for target detection to occur three conditions

must be met:

1) The target must give off sufficient signature to be
detected by the observer.

2) The observer must have line of sight to the target.

148

,/

3) The observer must be looking at the target.

The NVEOL model is based on something called number of

resolvable cycles. A resolvable cycle is a pair of

contrasting light and dark panels laid across the minimum

target dimension. Different numbers of resolvable cycles

are required for different levels of target detection. For

example, identifying that something is there requires less

cycles than identifying that something is a specific type of

tank.

SPARTAN, like JANUS and CASTFOREMH assigns every

possible target-observer pair a random threshold probability

of detection given time (Pinf). This has the effect of

making some observers' acquisition of some targets easier

than others and injects probability into the acquisition

process. To detect a target, the observer must be able

exceed the thrishold level of probability of detection for

that target. Both of these numbers are in lookup tables.

The threshold level is referenced for each target-observer

pair and the deterministically derived Pinf is referenced by

target posture, range, and background contrast.

If the target is giving off sufficient signature or if

the observer has already tried and failed to detect the

target, SPARTAN checks the line of sight from the observer

to the target. Line of sight (LOS) can be thought of as a

line drawn from the ob:uerver's eye to the eye of the target.

If no intervening terrain or vegetation breaks this line,

then SPARTAN assumes the entire target can be seen; there is

149

no partial line of sight. SPARTAN checks LOS in every

terrain cell between observer and target.

If LOS exists, SPARTAN determines if the observer was

looking at the target during that particular search event.

A random time is drawn and the probability of detection is

calculated. A Bernoulli trial determines if the target was

detected. If the target was acquired, the target is added

to the observer's potential target list, a SELECT TARGET

event is scheduled, and a fraction of the probability of

detection is added to t he other squ~d members' potential

target list to simulate intra-squad communication about the
i

target. Also, a message is shown in the upper left corner,

telling that either a RED or a BLUE soldier has detected

enemy at some grid coordinate. If the target kas not

detected, a fraction of the probability of detection is

added to the observer's potential target list to simulate

already searching that area once. This increases the

probability of detection in subsequent searches.

Target Selection. Once one or more targets has been

detected by a soldier during a search cycle, a TARGET SELECT

is scheduled. All the probabilities of detection for the

observer's potential targets &,e normalized and a random

Uniform(0,1) variable decider which target will be engaged.

That target is added to the observer's attribute list

(attribute #14) and a DIRECT FIRE engagement is scheduled.

If the observer is the BLUE squad leader and he has two or

150

• / /

more potential targets, an INDIRECT FIRE event is also

scheduled.

Direct Fire Enaacement. Direct fire engagements begin

"with a check to ensure that LOS still exists between target

and observer. If LOS still exists, SPARTAN ensures that the

observer has sufficient ammunition to engage the target. IF

not, SPARTAN changes magazines (decrements magazine count

and increments the round count) and reschedules a direct

fire engagement. If LOS exists and the observer has

ammunition, then the observer shoots at the target.

SPARTAN represents direct fire by a red line drawn from

the observer that closes on the target. A burst of sound

that represents the number of rounds fired accompanies the

line. In SPARTAN, M16s and AK74s fire three round bursts,

while Squad Automatic Weapons (SAWs) fire six round bursts.

The M203 gunner makes a decision as to whether fire his

ZM203 or his M16. If the range is less than 300 meters, the

gunner uses his grenade launmher. This is represented by a

red line connecting the observer and the impact point, a red

circle drawn at the point of impact, and an explosion sound.

The screen is then refreshed.

The results of direct fire engagements are determined

by a Bernoulli trial. For all weapons except the M203, a

random number is drawn and compared to probability of hit

tables that are referenced by weapon, range, and target

posture. The hit/miss results of the M203 engagement are

determined using the Carlton method where the probability of

151

:,.. • -- ';" -. .. .-. :/ ;' . •, .
/.. . : - • - ' •.

hit is determined by the ratio of the miss distance to the

burst radius of the round. If at least one round hits the

target, an IMPACT ASSESSMENT is scheduled. After an

engagement, a hit/miss message and the probability of hit

will appear in the upper left corner.

After an engagement, the observer has a 30% chance of

* reengaging the target or a 70% chance of moving and

searching again.

Indirect fire Engagements. Only the BLUE side has

indirect fire capabilities in SPARTAN. The system

replicated is the light infantry company's 60mm mortar. In

SPARTAN, the two mortars are located off screen at the

* 7position X =-500 Y a COO~. Mortars are called by the BLUE

squad leader whanever he identifies two or more enemy

soldiers. There is an associated time delay between calls

for fire and when the mortars actually fire to account for

computation of firing data and the preparation of

azmmunition. All missions are immediate suppression, both

tubes firing three rounds (six rounds total). There are no

repeat or adjust fire missions. All rounds are high

exrlosive point detonating.

There are several errors built into indirect fire

missions. First, the grid coordinates that the squad leader

calls to the tubes can be off as much as 100 meters in

either the vertical or horizontal direction, this replicates

map reading error. There is also the ballistic error of the

152

rounds. in both cases, a triangle distributi on is used to

simulate normal distributions.

Indirect fire engagements are represented by an

irregular burst of six explosions representinr the rounds'

launch. A red line is then drawn from the tubes to the

referenced target coordinate. Six red circles and

accompanying explosions then denote rounds impacting. Next.,

* a black rectangle is drawn over the red circles. This

rectangle represents the area in which all personnel,

friendly or enemy, are assessed as being hit. Outside this

rectangle (to a distance of 700m), all personnel are

assessed as suppressed. ThLi methcd of casualty assessment

is known as the cookie cutter method.

Impact Assessment. If a target is a3sessed as being

hit as result of either a DIRECT or INDIRECT FIRE

engagement, an IMPACT ASSESSMENT is called. If the target

previously was uninjured, it has a 30% chance of being

killed and a 70% chance of being wounded. I! the target was

already wounded, his chances of being killed increase to

50%. If the target is wounded, his attributes &re updated

to reflect that he is now prone and in a nonmoving status.

If the target is killed, his icon changes to grey, his wound

status, position status and move status attributes are

updated, and all his future events are removed from the

event list. If the target was a squad leader, a succession

of commuand to one of the designated team leaders takes

place.

153

04),

Reaction to Fire. Targets react to fire based on their

current posture and move status (Table 13). If the reacting

soldier is a squad leader, all squad members adopt his new

posture.

Table 13 React to Fire

CURRENT STATUS REACTION1
StandingSx Crouching (Pra.5)

Prone (Pra.2)
Prone/nonmoving (Prx.1)
No change (Pr=.2)

Crouching Prone (Pr=.4)
Prone/nonmoving (Pra.1)
No change (Pr=.5)

Prone Prone (Pr=.5)
Prone/nonmoving (Pr=.5)

NOTE: Unless move status is specifically indicated in
the reaction, it does not change from the current
status.

t•bstacl. The default data files contain no

obstacles, but users can input one obstacle in the

preprocessor. If an obstacle is emplaced, than a flag is

tripped and the squad leader checks along his current

azimuth to see 4f he can identify the obsta le (at which

point a message reflecting obstacle identifi ration will

appear in the upper left corner). If the ob tacle does not

intersect the squad leader's azimuth, then 8a RTAN assumes

the entire squad can bypass it. !

No direction change is caused by obstacle

identification, instead the squad will continue to move

forward until the first squad member hits the ohstacle.

154

When the squad hits the obstacle, breaching conmmences.

Breaching takes 100 time units, during which the squad

assumes a prone nonmoving status (although the squad might

change formation if it cornes under fire while breaching).

At the end of 100 time units, the squad posture changes back

to standing and moving.

Formation and Direction Cha ges. If the squad leader

¾ selects a target that is more than 25 degrees off the

current azimuth, he will direct a formation change to bring

his squad on line and a direction change towards the new

target in order to focus more fire power. If the target is

less than 25 degrees off the current azimuth, only a

formation chango is directed. In either case, squad

members' position attributes are updated, but the current

scheduled moves are not altered. This will be most

noticeable when it appears that observers are shooting at

empty spaces or that empty spaces are engaging targets. For

this reason, a REFRESH screen is scheduled during breaching

operations. Otherwise, the graphic's discrepancies will

self correct during the next MOVE cycle.

Command-and Control. SPARTAN has no specific commnand

and control module, instead command and control is built

into almost every aspect of the simulation. The squad

leader dictates movement speed (this maintains formation

integrity). The squad leader also dictates the posture of

all squad members (although in the absence of guidance they

will react individually). The BLUE squad leader also is the

only one who can call for indirect fire. Both squad leaders

adjust formations and direction of movement to attack the

enemy they feel is most dangerous. The squad leader is also

the only soldier who can identify obstacles. Finally, if

the squad leader is killed, there is a succession of commiand

based on subordinate leaders.

OutvUt and Help. SPARTAN provides extensive Help and

Output. Help menus are accessible through the main menu and

provide more specific information on algorithms and

equations used in modeling combat processes. Output is

available both during program execution and at program

completion. See Section IV for more specifics.

Section 11, Default Scenario

T$xs section provides information about the default

SPARTAN scenario.

Siutin The SPARTAN land combat model replicates

two squad sized forces fighting in terrain that is not

controlled by either side. Both forces have roughly

equivalent types of small arms, although BLUE is a bigger

force. BLUE also has indirect f ire. This situation is like

many low intensity conflict scenarios.

Terrain~. The terrain in the example is mostly rolling

grassy farmland. Elevation varies between 60 and 110

meters. There is one stream that is fordable to dismounted

soldiers and several wooded areas which slow movement and

hinder observation. There are two all weather capable road&

156

and numerous farm trails in the area. Wire obstacles from

previous operations are in the area.

Weather. Weather is not expected to hinder operations

for either side. A clear sunny day is expected. Neither

side has obscurants.

Mission. BLUE conducts a combat patrol to identify and

destroy any RED forces in the area of their patrol. RED

forces seek to deny BLUE forces access to the area. BLUE

has superior firepower, but RED is willing to accept

proportionally higher casualties. BLUE is successful if

they destroy two thirds or more of RED, forcing RED to

withdraw. RED is successful if they kill one third or more

of BLUE, forcing them to withdraw. Neither side has been in

the area before and there are no prepared positions.

Eguipment. Equipment for the default scenario is the

same as identified in Section I.

Data files. Ten data files are required for this

scerario. For a complete list, see Section IV.

Section III. STARTUP

This section contains information about STARTUP.exe, a

preprocessor that can be used to load, view, or edit default

data files. Basically, STARTUP.exe reads the .dat extension

data files into arrays, allows the user to edit them, and

creates .exp files for SPARTAN to read.

STARTUP is menu driven and like SPARTAN has extensive

help files. The four data files that STARTUP allows the

157

user to edit are the terrain data file, the soldier

attribute list, the initial event list, and the probability

of hit tables.

Terrain Editor. Unlike the first version of SPARTAN,

the terrain attribute list is hard wired. Because the data

must match the graphical representation on the screen for

the screen to be meaningful, the data files are closed to

users. The terrain editor, however, is designed to assist

first time land combat modelers. It offers the options

below:

1) View map--allows the user to view the map.

2) Add obstacles--allows the user to add one wire
obstacle. Creates OBS file for SPARTAN.

3) View terrain dat--allows the user to view terrain
cell data.

4) View elevation data--allows the user to see how
terrain cell elevation data dictates contour
lines.

5) Line of Sight--allows the user to pick observer
location and checks the line of sight for user
input ranges and fields of view.

The terrain data file is call MAP1.dat and contains 3

attributes for each of 2500 terrain cells. Each cell has an

elevation attribute between 60 and 110, a mobility factor

between .1 and 1 (1 being unimpeded mobility), and a

visibility factor between .5 and 1 (1 is unimpeded

visibility).

Soldier Attribute Editor. The Soldier httribute Editor

allows the user to accomplish tasks listed below:

158

...............

1) View BLUE soldier attributes--allows the user to

view selected BLUE soldier attributes.

2) View RED soldier attributes.

3) Add soldiers--allows the user to add soldiers (for
a maximum of 12 soldiers).

4) Delete soldiers.

5) Edit soldier attributes--allows the user to edit a
Sselected soldier's attributes .

6) Pick formation and location--allows to pick the
BLUE squad leader's location and one of four BLUE
formations. Automatically updates position data
for the remainder of the squad.

Each soldier has 15 attributes. These are listed in Table

14.

Table 14 Soldier Attributes

ATTRIBUTE DESCRIPTION RANGE OF VALUES
1 side 1=BLUE -1=RED
2 duty position 1=SL, 2=ASL, 3=GRNDR, 4=AR,

5=Rifleman
3 horizontal coord 0 - 1000
4 vertical coord 0 - 1000
5 # grenades 0 - 32
6 time lr3t fired
7 postuL 'efore direct fire engagement
8 direct. of travel 0 - 6.28 radians
9 move status 1 = moving 0 = stationary
10 posture lmstanding, 2=crouching

3=prone
11 weapon 1=M16A2, 2=AK74, 3=SAW

4=M203, 5,6=user defined
12 rounds/magazine M16=30, AK74=40, SAW=200
13 j magazines M16=6, AK74=6, SAW=3
14 target selected 0 - 12
15 wound status Odead, lzwounded, 2=alive

It is not necessary to start all soldiers en the game

map, but it is recommended that at least the squad leader

start on the screen. SPARTAN will carry soldiers and do

159

their computations as if soldiers were on the board, but

will not draw them until they are completely on the screen.

Probability of Hit Editor. The Probability of Hit

Editor allows the user to either review current Phit tables

or to create his own. SPARTAN uses the Polya-Williams

approximation to compute the single round hit probability of

a hit on a rectangular target. A negative binomial function

is then used to compute Phit for bursts of fire.

Polya-Williams needs both vertical and horizontal aim

and ballistic error. STARTUP will show the raw error data

and the computed Phit for each weapon referenced by target

posture and range.

Users can also input their own weapons data, but they

need aim and ballistic error(vertical and horizontal) for

ranges of 100 to 800 meters (in 100 meter increments).

These errors must be measured in radians. STARTUP will then

compute and show the Phit tables. For the table to be used

however, the user must alter at least one soldier's weapon

(attribute #11) to reflect the new weapon type. The first

user weapon is designated as weapon type five and the second

as weapon type six.

Event LipjEditor. The Event List Editor allows the

user to accomplish tasks listed below:

1) View initial event list.

2) Add events to the initial event list.

3) Delete events from the initial event list.

160

The event list has an event type, event time, and event

actor for all scheduled events. The default event list has

a move and a search event for all soldiers (for a total of

24 events). The user must be careful not to delete these as

these events initiate all other actions. In addition, the

squad leader for either side must be the first soldier for

that side to execute a move (in order to establish a move

time). Otherwise, the move time is zero and the first

soldier to move will continue to narch until he goes off the

screen. Users can add events (for a total of 45 events)

using the editor.

Section IV, Set Up and Use of SPARTAN

This section provides instructions for running SPARTANt.

Hardware.• SPARTAN actually consists of two separate

executable files and tvn default data files. STARTUP.exe is

a preprocessor designed to allow users to preview data files

and to edit them as they desire to alter the scenario.

SPARTAN.exe iý the executable simulation. Both programs

were written in QuickBASIC and were compiled to create

executable files that can run on any IBM (or clone) with DOS

2.1 or better and at least EGA capable monitor. The program

also needs a m nimum of 512K memory. Altering SPARTAN code

requires use o QuickBASIC.

=aa Files. Data files are in ASCII format. Most were

originally made using MathCad 2.5 and transferred to the

QUICKBasic directory for use by SPARTAN. There are ten data

161

/ I -

files required to run the preprocessor, these are listed in

Table 15.

Table 15 Drifault Data Files

FILEdME DErRaION
vnapl.dat terrain data file (5095x3)

svent.dat initial event list (99x3)
soldat.dat soldier attribute list (12:15)

K416.dat 3416 P(hit) tables (8W3)
AW74.dat AK74 P(OWt) tables (8x3)
SAW.dat SAW P(hit) tables (8xW)
cor.dat P(acquisition) tables (10)3)
INFNW.dat P(detect) tables (10x3)
INPNW.dat P(detect not in woods) tables

(10W3)
THRESHOLD.dat target-observer detect levels

(12x12)

These data files are accessible only by STARTUP~exe. This

preprocessor reads these files, allows the user to alter

some of them, and then creates files with .exp extension.

The .exp extension files are the ones read by SPARTAN.

SPARTAN requires 13 data files (Table 16).

Unless the user creates data during the preprocessor

run, three of these files are empty: p5hit.exp, p6hit.exp

and obs.exp. These are the files that the user has for

creating his own weapon P(hit) files (for a maximum of two)

and an obstacle file.

Overatina SPARTAN. To operate SPARTAN follow the

instructions listed below:

STEP 1. Ensure all ten default data files (TABLE 13),

three empty files, SPARTAN.exe and STARTUP.exe are in the

current directory.

162

Table 16 SPARTAN Data Files

FTLENAME PESCRIPTION
mapl.exp terrain data file (50x50x3)
event.exp initial event list (99x3)
joe.exp soldier attribute list (12x15)
plhit.exp M16 P(hit) tables (8x3)
p2hit.exp AK74 P(hit) tables (8x3)
p3hit.exp SAW P(hit) tables (8x3)
cor.dat P(acquisition) tables (10x3)
INFNW.dat P(detect) tables (10x3)
INFNW.dat P(detect not in woods) tables

(10x3)
THRESH.dat target-observer detect levels

(12x12)
p5hit.exp user input weapon's accuracy

phit tables
p6hit.exp user input weapon's accuracy

phit table
obs.exp obstacle data

STEP 2. At the command prompt, type "startup".

STARTUP.exe presentation screen will appear with a brief

message of explanation about STARTUP. You can access

STARTUP's help menu from elther the main menu or by hitting

<Fl> at any time during program execution. In STARTUP.exe,

the user can either load the default files or view and edit

them. First time users shotld use the load default files

option first to ensure all necessary data files for SPARTAN

are created before editing any files. Once the user is

finished in STARTUP, exit the program.

STEP 3. Ensure files listed in Table 16 are in the

directory with the executable files. For first time users,

running the Loal Default Files option in the preprocessor

will ensure that all files are present. At the command

prompt, type "spartan". The SPARTAN.exe presentation screen

will appear. When the user hits <CR>, a brief explanation

163

about SPARTAN will appear. The simulation will begin

loading data files when the user hits <CR> again.

STEP 4. SPARTAN will then query the user about

altering terminating conditions. Default terminating

conditions are passage of 350 time units, 3 BLUE KIA, 2 RED

KIA, or after 5000 calendar events. The user can also

change the random number seed and turn off the slaving of

simulation time to passage of real time.

STEP 5. After the user alters terminating conditions

(or elects not to), the simulation begins. The user can

bring up the display menu at any time by hitting <7I> or can

refresh the screen by hitting <F2>. The display menu allows

the user to:

1) View current soldier attributes.

2) View current potential target list.

3) View events currently on calendar.

4) View current Battle Statistics.

5) Refresh the screen.

6) Call the Help Menu.

7) Resume the simulation.

8) Terminate the simulation.

STEP 6. When the simulation terminates, SPARTAN

queries the user about viewing output. If the user elects

to do so, SPARTAN will show the final soldier attribute

list, potential target list, event calendar, Battle

Statistics, and Kill Card. SPARTAN also makes a history.dat

file which contains a cii.onological listing of calendar

164

I'/

-I!

events, actors, and times. If this file is not renamed,

SPARTAN will overwrite it the next simulation run.

Summary-

This User's Guide has provided information about

SPARTAN processes, the default scenario, and how to run

SPARTIO and its preprocessor. It is not intended as a stand

alone document. Much moro information about algorith.L is

provided in the programs' help files and in the thesis.

Since this is a first draft, comnuents from users about this

guide and the model will be gratefully accepted (and

selectively implemented) to improve SPARTAN's worth as a

teaching tool.

165

./ • - o'2/ /

S / •/ ./_

K -

/,/

Appendix E: Preprocessor Code

This appendix provides a listing of the QuickBASIC 4.5

program code for the preprocessor, STARTUP.exe. STARTUP is a

menu driven program that allows the user to view, edit, and

alter the default data files containing the soldier

attributes, initial event list, and obstacle list. STARTUP

also allows the user to create his own weapon type, provided

,/ /the user has accuracy data f or t hat weapon. Specific

information about these files is contained in Chapter III and

in the user's manual (Appendix D).

STARTUP is a single module, with subprograms for each

program function. All subprograms are listed in their

entirety, except for the help files. These files are screens

of formatted information that appears elsewhere in this

thesis.

QuickBASIC does not have a line continuatio2. L;uture, so

ampersands (&) have been used to indicate a lihe sxtcn.lon.

Comment lines are indicated by a single quotation *dt k).

1.

;' " ., • ' " ': ' / L .. /• , , x . " • , L, '•1 6.5. . ",I ,

S / i

1* STARTUP.bas *

'PURPOSE: This program is a preprocessor f or the SP-ARTAN
'combat model. It allows the user to view, modify, or'create his data files.

'This section of the program defines the subprograms and the'variables passed to the subprograms when the program is
'called.

DECLARE SUB aboutspartan ()'formatted information about
'SPARTAN history, developmenit,
'and data files

"DECLARE SUB explain () 'Explains how to use the menu
DECLARE SUB phit () 'Menu for Phit editor
DECLARE SUB cphit () 'Prints current raw accuracy data

'and phit tables
DECLARE SUR addwpn () 'accepts user input Accuracy data
DECLARE SUB hitdefault () 'loads default phit data
DECLARE SUB elist () 'Event Editor Menu
DECLARE SUB help () 'Help Menu
DECLARE SUB Joehelp () 'Soldier Attribute Editor Help

- DECLARE SUb maphelp () 'Terrain Editor Help
DECLARE SUB phithelp () 'Phit Editor help
DECLARE SUB evnti4lp () 'Event Editor help
DECLARE SUS mapp) 'Terrain File Editor menu
DECLARE SUB SOLDIER () 'Soldier Attribute Editor
DECLARE SUB jotatrib () 'edits seldier attributes
DECLZRE SUB red (opA%, r) 'displays red soldiers' attribute&
DECLARE SUB blue (opt%, b) 'displays blue soldiers' attributes
DECLARE SUB add () 'adds 3oldiezs to soldier list
DECLAR2 SUB delete () 'deletes soldiers
DECLARE SUB format () 'allows user t, yýick BLUE formation

band locati#,',
DECLARE SUB mapdefault () 'loads defa>.z terrain data
DECLARE SUB TERRAINDAT () 'displays terrain data file
DECTJARE SUB contour () 'displays cell elevation within

'contour intervals
DECLARE SUB wire () 'allous user to input a wire

'obstacle
DECLARE SUB map (opt%) 'Draws map
DECLARE SUB Ion () 'showa line of sight for

'user input data
DECLARE bUB opening () 'opening screev
DECLARE SUB default () 'loads default data f~les

'Frame draws the frame for
'different presentation screens

DECLARE SUB frame (left%, right%, top%, bottomn%, fore%, bac.%)
"DECLARE SUB editevnt (opt, num) 'edits event!
DECLARE SUB addevnt () 'adds events

167

/1• . " " i - . \ / " , :" . .'"• "

DV"LARE SUB delevnt () 'Allows users to delete events

'Dynamic allows the computer to create data arrays outaide the
'64K allocated for executable programs.
'$DYNAMIC

"This section dimensions data arrays
DI SHARED mapl(50, 50, 3) 'contains terrain cell data
D0N SRARED soldat(12, 15) 'contaiusa soldier attribute values
DIA CHArED event(99, 3) 'contains initial event list
DIM C14NRE' lin(10, 4) 'contains obstacle data
DIM SHAPED p1(8, 4) 'contains M16A2 Phit data
DIM SHARLD p2(8, 4) 'contains AK74 Phit data
DIM SHARED p3(8, 4) 'contains SAW ;hit data
DIlR SHARED p4(8, 4) 'contains user input Phit data
DIM SHARED p5(8, 4) 'contains user input Phit data

CL8 'clears the screen
COLOR 15, 9 'establishes blu,v as the screeo.

'background colo- and white as the
foreground color

CALL opening 'calls opening screen
CILL explain 'calls expainatory screen

DO 'queries the user for the next task until he is done
COLOR 15, 9
CL8

.'This ne.t line establishes options for frame oi6 the main reiu
left% s 10: right% a 70: topt a 3: bottom% w 24: fore% * 15:
&back% 9
CALL trame(left%, right%, top%, bottom%, fore%, back%)
L.OCATE 4, 30: PR!VT "kASTER MENRU"
LOCATE 6, 25: PRINT "1) Work on terrain file"
LOCATE 6. 25: PRINT "2) Work on soldier file"
LOCATE 10, 25: PRINT "3) Work on wearon P(hit) file"
LOCATE 12, 25: PRINT "4) Wcrk on event tile"
LOCATE 14, 25: PRINT "5) Read Relp file"
LOCATE 16, 25: PRINT "6) Input default data"
LO(CATE 18, 25: PRINT "7) Exit program"
LOATE 20, 15: PRINT "Input your selection number"
9 LOCATE 21, 25: oh$ a INPUTS(1)

SELECT CLSE ch$
CASE "I"

CALL mapp
CASK "2"

CALL SOLDIER
CASE "3"

CALL phit
CASE "4"

CALL *list

166

CASE "5"
CALL helpCASE *"6"
CALL default

CASE "7"
EXIT DO
CASE ELSE 'this is the error trAy

BEEP
LOCATE 22, 25: PRINT "Try again PYL%, choices are between

I. 1 and 7"
OOTO

LND SLLECT
LOOP
CLS
END

SUB aboutapartan

'ABOUTSPARIAN is an information screen, that -rovides the
'history of srARTAN, its development, and its data
$requirements, The formatted text is not presented here, but'ctn be found in the user's guide.

CLS
CALL frame(10, 70, 4, 8, 15, 9)
LOCATE 6, 26: PRINT " ABOUT SPARTAN"
IND SUB

SUB add

'The &ubprogram add allows the user to add soldiers to the
'soldier list. The program first checks to ensure that the
'number of soldiers you desire to input does not exceed the
'maximu allowable of 12. The program then calls to either
'the BLUE or RED subprograms, which will display the current'sollier l1st and then allow the uaer to input the new
'soldier's attributes.

'VARIABLES: r v number of red soldiers to be added
b a number of blue soldiers to be added
empty a max number of allowable additions
total a number of total desired additions

CLS
CALL frame(10, 70, 4, 15, 15, 9)
LOCATE 5, 20: INPUT "how many RE) soldiers do you wish to
& add?"; r
LOCATE 6, 20: INPUT "Now many BLUE soldiers do you wish to

a add?"; b

total a r + b
empty a 0

'This loop counts the number of allowable additions
FOR i a 1 TO 12

IF soldat(i, 1) * 0 THEN empty a 1 + empty
NEXT i

'if too many additions are desired than
IF empty < total THEN

LOCATE 8, 20: PRINT "You cannot add that mtny soldiers."
LOCATE 10, 20: PRINT "You must delete at least"; 'mpty -

& total; "soldiers first"
LOCATE 12, 20: PRINT "HIT <CR> TO 00 TO KAIN MENU"

5e$ INPUTS(1)
GOTO 10

END IF
IF r > 0 THEN CALL red(2, r)
IF b > 0 THEN CALL blue(2, b)
10 END SUB

SUB addevnt

'The subprogram ADDEVNT allows the user to add up to 25 events
'to the initial event list. The program first checks to
'ensure that the user only intends to add less than 25 events,
'then calls EDITEVNT which displays the current event list
'and accepts input.'***************************, ***,************************.**

'VARIABLES: r a number of desi ed added events
total • current n% ber cf events on list

CL.
CLL frame(10, 75, 4, 8, 15, 9)
uOCATE 5, 20: PRINT " You cun only add 25 events max."
LOCATE 6, 20: INPUT "How many events do you wish to add?"; r
total a r
'loop to count current events
FOR i a 1 TO 99

IF event(i, 1) • 0 THEN total * total + 1
NEXT i'

'If there are already 46 events on th list, no more can be
'added

IF total > 46 THEN
LOCATE 12, 20: PRINT "You cannot add that many events. "

LOCATE 14, 20: PRINT "You must delete at least"; total -

8 46;" events first"
LOCATE 16, 20: PRINT "HIT <CR> TO GO TO MAIN MENU"
6$ a INPU'$(1)
OOTO 20

END IF

170

IF r > 0 THEN CALL editevnt(2, r)
20 END SUB

SUB addwpn

'The subprogram ADPWPN accepts user input accuracy data and
'creates phit tables. Input data must be for ranges of 100-
'800 meters in increments of 100m. It is assumed the data is
'in milliradians. The user must also input the number of
'rounds per burst of fire. The method of calculating the
'phit date is the Polya-Williams approximation.

'VARIABLES: n defin~s the weapon type. The first user input
weapon is #7, the second is #8.

CLS
DIM a4(8, 5) 'user input accuracy data includes horizontal

and vertical aim and burst error
DIM s&(8) 'array of horizontal standard error
DIM sy(8) 'array of vertical standard error
DIM wid(S) 'array of P-W X factors,
DIM tall(8, 3)' matrix of P-W Y factors
DI-4 pht(8, 3) 'Phit tables

n=7
OPEN "p4hit.exp" FOR OUTPUT AS #n

31 CALL frame(10, 70, 2, 5, 15, 9)'preIentation screen
LOCATE 3, 20: PRINT "ADDING A NEW WEAPON TO SPARTAN"
LOCATE 7, 1: PRINT "To add a new weapon to SPARTAN, you must
& have accuracy data"
PRINT " (aim error and ballistic error) for eight ranges. If
& you have less thnn"
PRINT "eight ranges, fill out the remainder with Os."
LOCATE 11, 1: PRINT "input the required as the cursor
11 Indicates:"

'presentation screen for user input accuracy data
LOCATE 12, 1: PRINT "RANGE AIM ERROR (mils) BALLISTIC
& ERROR (mils)"
LOCATE 13, 1: PRINT " (m) HORIZ VERT HORIZ
& VERT"

'This loop accepts acct.racy data for each range
FOR i a 1 TO 8

LOCATE 14 + i, 1, 1: ?RINT USING "###m"; 100 * i-
& a4(i, 1) n 100 * i 'range

LOCATE 14 + i, 11, 1: INPUT &4(1, 2)'horisontal aim err'5r
LOCATE 14 + i, 21, 1: INPUT a4ki, 3)'vertical aim error
LOCATE 144 i, 33, 1: INPUT a4(i, 4)'horis ballistic err
LOCATE 14 1 i, 42, 1: INPUT a4(&', 5)'vert ballistic err

171

/ "'

/

NEXT i

'This loop computes the total standard error in the vertical
and horizontal directions

FOR i a 1 TO 8
sx(i) a (a4(i, 2) * a4(i, 1) / 1000) £ 2 + (a4(i, 4) *

& a4(i, 1) I 1000) - 2
sy(i) a (a4(i, 3) * a4(i, 1) / 1000) 4 2 + (a4(i, 5) *

& a4(i, 1) / 1000) ^ 2
'compute P-W X term

wid(i) 1 1 - EXP(-.32 / (3.14 * sx(i)))'compute P-W Y term
tall(i, 1) z 1 - EXP(-1.62 / (3.14 * sy(i,))
tall(i, 2) a I - EXP(-.405 / (3.14 * sy(i)))
tall(i, 3) a 1 - EXP(-.101 / (3.14 * sy(i)))
p4(i, 1) x a4(i, 1)

'This loop computes the phit data
FOR j a 1 TO 3

pht(i, J) a SQR(wid(i) * tall(i, J))
NEXT j

NEXT i
PRIbT "how many rounds in a burst?"
INPUT ml

'This loop uses the negative bintmial function to compute the
'Phit for a burst weapon
FOR i a 1 TO 8

FOR j a 2 TO 4
p4(i, J) 1 1 - (1 - pht(i, j - 1)) ml

NEXT j
NEXT i
CLS

'Print the user input weapon's Phit table
LOCATE 5, 1: PRINT "Here is your weapon's data."
LOCATE 10, 1: PRINT "RANGE TARGET POSTURE"
LOCATE 11, 1: PRINT " Sm) STANDING CROUCHING
PRONE"
LOCATE 14, 1
FOR I 1 1 TO 8
PRINT p4(i, 1), p4(W, 2), p4(i, 3), p4(i, 4) 'print data
PRINT #n, p4(i, 2), p4(i, 3), p4(i, 4) 'write data to file
NEXT i
a$ a INPUTS(1)
CLOSE #n
'ask the user if he desires to input a second weapon type
IF n a 8 THEN GOTO 32
INPUT "Do you want to add another weapon type ? Y/N"; ansi
IF ans$ a "Y" OR ans$ a "Y" THEN

OPEN "pshit.exp" FOR OUTPUT AS #7
nUS

172

CLS
GOTO 31
END IF

32 END SUB

SUB blue (opt%, b)

'Subprogram BLUE displays the current BLUE soldier data and
'then, depending on the user option, will edit, add or delete
'a soldier.

'VARIABLES: opt% is the variable that declares what option the
subprogram executes
b is the number of soldiers to be edited

CLS
WIDTH 80, 25

'This presentation screen displays the current BLUE data
CALL frame(10, 70, 4, 7, 15, 9)
LOCATE 5, 30: PRINT "BLUE SOLDIER DATA"
LOCATE 8, 1: PRINT "SOLDIER DUTY LOCATION MOVEMENT

STATUS POSTURE WEAPON"
LOCATE 9, 1: PRINT " POSITION DIRECTION"
FOR i a 1 TO 12

IF soldat(i, 1) < 1 THEN GOTO 65
LOCATE 10 + i, 3: PRINT i
LOCATE 10 + i, 11: ON soldat(i, 2) GOTO 41, 42, 43, 44, 45

41 PRINT "SQD LDR" 'duty postion
GOTO 46

42 PRINT "TEAM LDR"
GOTO 46

43 PRINT "GRENADIER"
GOTO 46

44 PRINT "SAW GUNNER"
GOTO 46

45 PRINT "RIFLEMAN"
46 LOCATE 10 + i, 23: PRINT USING "#8#"; soldat(i, 3);
soldat(i, 4)
LOCATE 10 + 1, 36

'This next allorithm converts radians into the map's 360
'degree dat~a
dir = soldat(i, 8)
dir u 90 - dir * 180 / 3.141
IF dir < 0 THEN dir = 360 + dir

PRINT USIN3 "#)#"; dir
LOCATE 10 + i, 44:
IF soldat(i, 9) a 0 THEN 'move status
PRINT "STATIONARY"

173

COTO 50
END IF
PRINT "MOVING"
50 LOCATE 10 + i, 57: ON soldat(i, 10) GOTO 51, 52, 53
51 PRINT "STANDING" 'posture
GOTO 54
52 PRINT "CROUCHING"
GOTO 54
53 PRINT "PRONE"
54 LOCATE 10 + i, 69: ON soldat(i, 11) GOTO 61, 62,.63,. 64
61 IF soldat(i, 2) = 3 THEN 'weapon type
PRINT "M203"
GOTO 65
END IF
PRINT "M16A2"
GOTO 65
62 PRINT "AK-74"
GOTO 65
63 PRINT "SAW"
GOTO 65
64 PRINT "OTHER"
65 NEXT i
LOCATE 1, 25: PRINT "HIT <CR> to continue"
e$ a INPUT$(1)

'opt%=O means no editing is desired
IF opt% v 0 THEN GOTO 79

'opt%z2 means to add additional soldiers
IF opt% a 2 THEN GOTO 70

'This portion deletes BLUE soldiers
66 LOCATE 11 + i: INPUT "Which soldier do you want to
& delete?", d%
IF soldat(d%, 1) < 1 THN.

PRINT "The number you input is not a blue soldier, try
a' again."

GOTO 66
END IF

'This loop tercs out all soldier data
FOR i a 1 TO 15

soldat(d%, i) a 0
NEXT i
GOTO 79' goto the end of the subprogram

'Input soldier data
70 CLS
LOCATE 2, 20: PRINT "INPUT BLUE SOLDIER DATA"
LOCATE 6, 4: PRINT "DUTY POSITION"
LOCATE 7, 4: PRINT "X GRID COORD"
LOCATE 8, 4: PRINT "Y GRID COORD"
LOCATE 9, 4: PRINT "4GRENADES"

174

LOCATE 10, 4: PRINT "TIME FIRFD"
LOCATE 11, 4: PRINT "NOT USED"
LOCATE 1, 4: PRINT "MOVEMENT DIRECTION"
LOCATE 13, 4: PRINT "MOVEMENT STATUS"
LOCATE 14, 4: PRINT "POSTURE"
LOCATE 15, 4: PRINT "WEAPON TYPE"'
LOCATE 16, 4: PRINT "ROUNDS PER MAGAZINE"
LOCATE 17, 4: PRINT "NUMBER MAGAZINES"
LOCATE 18, 4: PRINT "TARGET ID"
LOCATE 19, 4: PRINT "WOUND STATUS"
FOR i = 1 TO r

FOR j = 1 TO 12
IF soldat(j, 2) > 0 THEN GOTO 71
LOCATE 3, 18 + 1 * 10: PRINT "SOLDIER"; i
soldat(j, 1) = 1
FOR k = 2 TO 15

LOCATE 3 + k, 18 + 1 * 10: INPUT soldat(j, k)
NEXT k
GOTO 72

71 NEXT j
72 NEXT i
79 END SUB

SUB contour

'Subprogram CONTOUR prints the map screen, then, in increments
'of 10 meters, highlights all terrain cells having elevations
'contained by the contour intervals.

'copies the map on the nondisplayed screen to the visible
'screen
PCOPY I, 0

'This loop starts at the lowest elevation level in SPARTAN and
'highlights the center of each terrain cell having a elevation
'batween the two levels
FOR k a 0 TO 40 STEP 10

LOCATE 1. 1: PRINT "Elevation between"; 60 + k; "and";
& 69 + k; "meters"

FOR i = 1 TO 50
FOR j a I TO 50
if the elevation of the c€ll is witin the current
interval, highlight the center- of the cell
IF mapl(i, J, 3) > 59 + k AND mapl(i, J, 3) < 70 + k THEN

PSET (i * 20 - 10, j * 20 - 10), 0
END IF
NEXT j

NEXT i
LOCATE 2, 1: PRINT "HIT <CR> to continue"

175

e$ * INPUT$(1)

'copy the undisplayed map to the current screen to do the next
'contour interval

• PCOPY 1, C
NEXT k
END SUB

SUB cphit
** *** * *** * ** * * * * ** ** * ***** * *** * ** *** ** * ***** * *** * * **** ** ** *

'The subprogram cphit displays the raw accuracy data for the
'default weapons and then displays the computed phit tables

CLS
CALL frame(10,'70, 4, 7, 15, 9)
LOCATE 5, 20: PRINT "CURRENT ACCURACY DATA FOR M16A2"
LOCATE 10, 1: PRINT "RANGE AIM ERROR (mils) BALLISTIC
ERROR (mils)" !
LOCATE 11, 1: PRINT " (m) HORIZ VERT HORIZ

VERT"
PRINT " 100 1 4.7 4.7 7.85 8.98 "
PRINT " 200 3.5 3.5 7.85 8.98"
PRINT " 300 3.1 3.1 7.85 8.98"
PRINT " 400 2.9 2.9 7.85 8.98"
PRINT " 500 2.8 2.8 7.85 8.98 "
PRINT " 600 2.7 2.7 7.85 8.98"
PRINT " 700 2.6 2.6 7.85 8.98"
PRINT " 800 2.5 2.5 7.85 8.98'
LOCITE 23, 15: PRINT "HIT <CR> TO SEE P(HIT)"
e$ a INPUTS(1I
CLS
CALL frame(10, 70, 4, 7, 15, 9)
LOCATE 5, 20: PRINT "CURRECT P(hitl DATA FOR M16W2"
LOCATE 10, 1: PRINT "RANGE TARGET POTURE"
LOCATE 11, 1: PRINT " (m) STANDING CROUCHING

PRONE"
LOCATE 14, 1
FOR i a 1 TO 8

PRINT pl(i, 1) pl(i, 2), pl(i, 3), pl(i, 4)
NEXT i

'ask the user il he desires to view more data
LOCATE 23, 15: PRINT "Do you want to see other P(hit) tables?
& YIN"
ans$ = INPUT$(1)
IF ans$ a "Y" OR ans$ = "y" THEN GOTO 81
GOTO 80

'Accuracy data for the AK74
el CLS

176

CALL frame(10, 70, 4, 7, 15, 9)
LOCATE 5, 20: PRINT "CURRENT ACCURACY DATA FOR AK-74"
LOCATE 10, 1: PRINT "RANGE AIM ERROR (mils) BALLISTIC
ERROR (mils)"
LOCATE 11, 1: PRINT " (i) HORIZ VERT HORIZ

VERT"
PRINT " 100 4.7 4.7 .8.47 8.9"
PRINT " 200 3.5 3.5 8.47 8.9"
PRINT " 300 3.1 3.1 8.47 8.9"
PRINT " 400 2.9 2.9 8.47 8.9 "
PRINT " 500 2.8 2.8 8.47 8.9"
PRINT " 600 2.7 2.7 8.47 8.9"
PRINT " 700 2.6 2.6 8.47 8.9"
PRINT " 800 2.6 2.6 8.47 8.9"
LOCATE 23, 15: PRINT "HIT <CR> TO SEE P(HIT)"
e$C INPUT$(1)
CLS
CALL frame(10, 70, 4, 7, 15, 9)
LOCATE 5, 20: PRINT "CURRENT P(hit) DATA FOR AK-74"
I'XCRTE 10, 1: PRINT "RANGE TARGET POSTURE"
LOCATE 11, 1: PRINT " (m) STANDING CROUCHING

PRONE"
LOCATE 14, 1
FOR i = 1 TO 8
PRINT p2(i, 1), p2(i, 2), p2(i, 3), p2(i, 4)
NEXT i
LOCATE 23, 15: PRIr;r "Do you want to see other P(hit) tables?
YIN"
ansS = INPUT$(1)
IF ans$ = "Y" OR ans$ "Y" THEN GOTO 82
GOTO 80

'Accuracy data for the SAW and RPK74
82 CLS
CALL frame(10, 70, 4, 7, 15, 9)
LOCATE 5, 20: PRINT "CURRENT ACCURACY DATA FOR SAW/RPK-74"
LOCATE 10, 1: PRINT "RANGE AIM ERROR (mils) BALLISTIC
ERROR (mils)"
LOCATE 11, 1: PRINT " (m) HORIZ VERT HORIZ

VERT"
PRINT "100 6.- 6.1 1.27 1.41 "
PRINT "200 4.1 4.1 1.27 1.41"
PRINT "300 3.1 3.1 1.27 1.41"
PRINT "600 2.7 2.7 1.27 1.41"
PRINT "900 2.5 2.5 1.27 1.41"
PRINT "1000 2.5 2.5 1.27 1.41"
PRINT "1800 2.4 2.4 1.27 1.41"
PRINT "2100 2.4 2.4 1.27 1.41"
LOCATE 23, 15: PRINT "HIT <CR> TO SEE P(HTT)".5 NP :UT$(1)
CL3i
QCLL frame(10, 70, 4, 7, 15, 9)
LOCATE 5, 20: PRINT "CURRENT P(hit) DATA FOR SBW/RPK74"

177

.......................

LOCATE 10, 1: PRINT "RANGE TARGET POSTURE"
LOCATE 11, 1: PRINT " (i) STANDING CROUCHING
& PRONE"
LOCATE 14, 1
FOR i - 1 TO 8

PRINT p3(i, 1), p3(i, 2), p3(i, 3), p3(i, 4)
NEXT i
LOCATE 23, 15: PRINT "HIT <C"> to return to msnu"
e$ -INPUT$(1)
SO END SUB

SUB default

'The subprogram default takes all default data files and
'creates the .exp files that are read by SPARTAN for
'simulation execution. It also creates empty obstacle and
'user input phit files

CLS
CALL fLasne(10, 70: 4, 7, 15, 9)
LOCATE 5, 22: PRINT "STANDBY WHILE DEFAULT DATA FILES LOAD."

OPEN "mapl.dat" FOR INPUT AS #1 'terrain data file
OPEN "mapl.exp" FOR OUTPUT AS #2
FOR i 1 TO 50
FOR j 1 TO 50

INPUT #1, mapl(i, j, 1), mapl(i, J, 2), mapl(i, J, 3)
PRINT #2, mapl(i, J, 1), mapl(i, J, 2), mapl(i, J, 3)
NEXT j
NEXT i

CLOSE #1
CLOSE #2

OPEN "ml6.dat" FOR INPUT AS #1 'M16 Phit table
OPEN "ak74.dat" FOR INPUT AS #2 'AR74 Phit table
OPEN "saw.dat" FOR INPUT AS #3 'SAW Phit table
OPEN "P1HIT.exp" FOR OUTPUT AS #4
OPEN "P2HIT.exp" FOR OUTPUT AS #5
OPEN ",13HIT.exp" FOR OUTPUT AS #6
FOR i = I TO 8
FOR j c 1 TO 4

INPUT #1, pl(i, J)
INPUT #2, p2(i, j)
INPUT #3, p3(i, j)
NEXT j
NEXT i

FOR i a 1 TO 8
FOR J = 2 TO 4

PRINT #4, pl(i, J)
PRINT #5, p2(i, J)
PRINT #6, p3(i, J)

178

i: ... : : : : ; ,; •: ,? • i ; :

NEXT j
NEXT i
CLOSE #1: CLOSE #2: CLOSE #3: CLOSE #4: CLOSE #5: CLOSE #6

OPEN "P4HIT.exp" FOR OUTPUT AS #1 'user input ?hit data
OPEN "P5HIT.exp" FOR OUTPUT AS #2 'user input Phit data
CLOSE #1: CLOSE #2
OPEN "obs.exp" FOR OUTPUT AS #1
CLOSE #1

OPEN "event.dat" FOR INPUT AS #1 'initial event list
OPEN "event.exp" FOR OUTPUT AS #2
FOR i = 1 TO 24
FOR j = 1 TO 3

INPUT #1, event(i, j)
PRIFT #2, event(i, j)
NEXT 3
NEXT i

CLOSE #1: CLOSE #2

OPEN "joe.dat" FOR INPUT AS #1 'soldier attribute list
OFEN "joe.exp" FOR OUTPUT AS #2
FOR i = 1 TO 12
FOR j = 1 TO 15

INPUT #1, soldat(i, j)
PRINT #V, soldat(i, j)

NEXT j
NEXT i
CLOSE #1: CLOSE #2
END SUB

SUB delete

'The subprogram DELETE checks to see what type of soldier the
'user wishes to delete, then calls to either RED or BLUE to
'delete the soldier's data.

CLS
CALL frame(10, 70, 4, 7, 15, 9)
LOCATE 5, 20: INPUT "Do you wish to delete RED or BLUE
soldiers? r/13"; ans$
IF ans$ = "R" OR avs$ = "r" THEN
CALL red(l, 0)
GOTO 90
END IF
CALL blue(l, 0)
90 END SUB

179

~~~~~~~~~~~~~...... . ... ....... . /..'.. ".... ....-... ,.."....•.. •".. .. '.~. . .. ,1-" " ,"'. "



SUB delevnt

'This subprogram allows tha user tc delete events from the
'initial event file. After inputing the number of events to
'be deleted, the subprogram call to edit event to delete the
events.

CLS
CALL frame(10, 70, 4, 7, 15, 9)
LOCATE 5, 20: INPUT "How many events do you wish to delete";d
IF d > 0 THEN
CALL editevnt(1, d)
GOTO 100
END IF
100 END SUB

SUB editevnt %opt, num)

'EDITEVNT allows the user to view the current event list and
'then edit, add or delete events

'VARIABLES: k= number of events currently displayed cn the
'screen. This variable is used to control the screen display

opt = the user option for file editing
1 = delete, 2 = add, 3 edit, 4=view

CLS
WIDTH 80, 25
CALL frame(10, 70, 4, 7, 15, 9)

'first, display the current event list

LOCATE 5, 30: PE•INT "CURRENT EVENT LIST"
LOCATE 8, 1: PRINT "EVENT TYPE EVENT7 ACTOR

TIME SCHEDULED"
k = 0
VIEW PRINT 10 TO 24
FOR i = 1 TO 99

IF event(i, 1) = 0 THEN GOTO 110
k~k+l
IF k < 1U 7HEN GOTO 111
LOCATE 12 + k: PRINT "Hit <CR> to cont nue"

e$ = INPUT$(1)
CLS
k = 0
111 LOCATE 10 + k, 3: PRINT i

'translate the event type into verbage

LOCATE 10 + k, 11: ON event(i, 1) GOTO 112, 113, 114, 115,

180

- - , .• ,-, . " .... !• . ,.•• ; ... i• -. .. ...



. • .. .. ,/

116, 146
112 PRINT "Search"

C-OTO 117
113 PRINT "Select tgt"

GOTO 117
114 PRINT "Engage tgt"

GOTO 117
115 PRINT "Move"

GCOTO 117
116 PRINT "Rea-.t to fire"

GOTO 117
146 PRINT "Indirect fire"
117 LOCATE 10 + k, 30: PRINT USING "###W#4"; event(i, 2)
LOCATE 2,0 + k, 46: PRINT USING "###.##"; event(i, 3)
110 NEXT i
VIEW PRINT
LOAT.E 1, 25: PRI1NT "HIT <Ch> to uontinue"
eS = INPUT$(1)
CLS

'opt is the option for editing

ON opt COTO 120, 121, 122, 130

delete one or more events
120 CLS
LOCATE 3: INPUT "Which event do you want to delete?", e%
FOR i = 1 TO 99

IF '.vent(i, 1) = 0 THEN GOTO 123
k=k+ 1

123 NEXT i
IF e% > k 'HEN

CLS
PRINT "The number you input is not a scheduled event, try
& again."
GOTO 120
END IF

'loop zeros out event on list
FOR i = 1 TO 3

event(e%, i) = 0
NEXT i

INPUT "Do you wish to delete any more scheduled events? Y01";
ans$
IF ans$ = "Y" OR nns$ "y" THEN GOTO 120
CLS
GOTO 130 'return to the previous subprogram

'add oxe or more events
121 CLS
FOR i = 1 TO 22

LOCATE 8, 10: PRINT "TYPE EVENT ACTOR TIME

18i



SCHEDULED"
k= 0
IF event(i, 1) > 0 GOTO 124
k-k+1
LOCATE 10 + k, 1: PR7NT "Input"
LOCATE 10 + k, 15: INPUT event(i, 1)
LOCATE 10 + k, 28: INPUT event(i, 2)
LOCATE 10 + k, 40: INPUT event(i, 3)
LOCATE 23, 1: INPUT "Do you wish to add any more

& events?Y/N"; ans$
IF ans$ = "Y" OR ans$ = "y" THEN GOTO 124
GOTO 130' return to the previous subprogram

124 CLS
NEXT i
GOTO 130 'return to the previous subprogram, no more events

can be added

'Edit an event currently on the list
122 CLS
LOCATE 11 + k: INPUT "Which event do you wish to edit?"; e
CLS
LOCATE 5, 30: PRINT "Here is the current event"
LOCATE 8, 1: PRINT "EVENT TYPE EVENT ACTOR TIME
SCHEDULED"

LOCATE 10, 3: PRINT e
LOCATE 10, 11: ON event(e, 1) GOTO 125, 126, 127, 128, 129,

147
125 PRINT "Search (1)"

GOTO 131
126 PRINT "Select tgt (2)"

GOTO 131
127 PRINT "Engage tgt (3)"

GOTO 131
128 PRINT "Move (4)."

GOTO 131
129 PRINT "React to fire (5)"

COTO 131
147 PRINT "Indirect fire (6)"

131 LOCATE 10, 25: PRINT USING "##I.##"; event(e, 2)
LOCATE 10, 40: PRINT USING "###.##"; event(e, 3)
LOCATE 11, 1: PRINT "Input"
LOCATE 11, 15: INPUT event(e, 1)
LOCATE 11, 25: INPUT event(e, 2)
LOCATE 11, 40: INPUT event(e, 3)
LOCATE 13, 1: INPUT "Do you wish to edit any more events?
Y/N"; ans$
CLS
IF ans$ a "Y" OR ans$ "y" THEN GOTO 122
130 END SUB

182



SUB elist

'ELIST is the Event List Editor Menu. It downloads the
'default data file, allows the user to access different editor
'functions and creates the .exp event file for SPARTAN.

CLS
COLOR 15, 9
CALL frame(10, 70, 4, 7, 15, 9)
LOCATE 5, 20: PRINT "STANDBY WHILE EVENT FILE IS DOWNLOADED"
OPEN "event.dat" FOR INPUT AS #1
FOR i = 1 TO 24

FOR j = 1 TO 3
INPUT #1, event(i, j)

NEXT j
NEXT i
CLOSE #1
DO
CLS
left% = 10: right% = 70: top% = 4: bottom% = 20: fore% = 15:
back% = 9
CALL frame(left%, right%, top%, bottom%, fore%, back%)
LOCATE 6, 20: PRINT "EVENT DATA FILE EDITOR MENU"
LOCATE 8, 20: PRINT "1) Look at scheduled events"
LOCATE 10, 20: PRINT "2) Add event"
LOCATE 12, 20: PRINT "3) Delete event"
LOCATE 14, 20: PRINT "4) Edit event list"
LOCATE 16, 20: PRINT "5) Event Editor Help"
LOCATE 18, 20: PRINT "6) Exit to Main Menu"
LOCATE 19, 20: ch$ = INPUT$(1)
SELECT CASE ch$
CASE "1"

CALL editevnt(4, 0)
CASE "2"

CALL addevnt
CASE "3"

CALL delevnt
CASE "4"
CALL editevnt(3, 0)
CASE "5"
CALL evnthelp
CJSE "6"

'Case 6 is to exit the Event Editor. Before exiting, the
altered data is loaded into the .exp file for SPARTAN

OPEN "event.exp" FOR OUTPUT AS #2
FOR i = 1 TO 99

FOR j = 1 TO 3
PRINT #2, event(i, J)

NEXT j
NEXT i
CLOSE #2

183



EXIT DO
CASE ELSE

BEEP
LOCATE 18, 20: PRINT "Try again, COMER"
ch$ z INPUTS(1)

END SELECT
LOOP
END SUB

SUB explain

'EXPLAIN presents information for preprocessor users for
running STARTUP

CLS
COLOR 15, 1
CALL frame(10, 70, 4, 7, 15, 1)
LOCATE 5, 20: PRINT "WELCOME TO SPARTAN STARTUP PROGRAM"
LOCATE 9, 4: PRINT "The purpose of this program is to review
and or modify SPARTAN's"
LOCATE 10, 4: PRINT "default data files."
LOCATE 11, 4: PRINT "If you have any questions about SPARTAN
processes during the simulation"
LOCATE 12, 4: PRINT "run refer to the USER GUIDE or hit <FI>,
that will bring up the"
LOCATE 13, 4: PRINT "HELP MENU."
LOCATE 24, 1: INPUT "Hit <CR> to continue to the main menu.",
ans$
END SUB

SUB format

'FORMAT allows the user to pick a DLUE formation and squad
'leader location. It then updates all the rest of the squad
'member's locations.

'VARIABLES: array is the data array that contains the
'information neccessary to draw the icons in the formation
'diagrams

SCREEN 9
WIDTH 80, 43
DIM array(O TO 104) AS INTEGER

'Establish four view ports on the screen, and diagram the
'formations

184



VIEW (39, 0)-(299, 125), 9, 0
LOCATE 1, 10: PRINT "DIRECTION OF MOVEMENT"; CHR$(24)

'draw stick man
LINE (133, 55)-(135, 57), 15, BF
LINE (134, 55)-(134, 61), 15
LINE (134, 62)-(137, 68), 15
LINE (134, 62)-(131, 68), 15
LINE (135, 59)-(138, 62), 15
LINE (133, 59)-(130, 62), 15
'put man into data array
GET (130, 55)-(138, 68), array

draw first formation

PUT (180, 70), array, PSET
PUT (230, 70), array, PSET
PUT (80, 70), array, PSET
PUT (30, 70), array, PSET
PUT (65, 30), array, PSET
PUT (175, 30), array, PSET
PUT (150, 90), array, PSET
PUT (110, 90), array, PSET
LOCATE 16, 10: PRINT "1. SQUAD LINE/TEAM WEDGE"
VIEW

2nd formation

VIEW (341, 0)-(600, 125), 9, 0
LOCATE 1, 47: PRINT "DIRECTION OF MOVEMENT"; CHR$(26)
PUT (144, 60), array, PSET
PUT (240, 60), array, PSET
PUT (90, 60), array, PSET
PUT (210, 40), array, PSET
PUT (210, 80), array, PSET
PUT (180, 100), array, PSET
PUT (60, 40), array, PSET
PUT (60, 80), array, PSET
PUT (30, 20), array, PSET
LOCATE 16, 47: PRINT "2. SQUAD COLUMN/TEAM WEDGE"

VIEW
I 3rd formation

VIEW (39, 175)-(299, 300), 9, 0
LOCATE 23, 10: PRINT "DIRECTION OF MOVEMENT"; CHR$(26)
PUT (140, 60), array, PSET
PUT (240, 60), array, PSET
PUT (90, 60), array, PSET
PUT (210, 40), array, PSET
PUT (210, 80), array, PSET
PUT (180, 60), array, PSET
PUT (60, 40), array, PSET

185



PUT (60, 80), array, PSET
PUT (30, 60), array, PSET
LOCATE 38, 10: PRINT "3. SQUAD COLUMN/TEAM WEDGE"

VIEW
4th formation

VIEW (341, 175)-(600, 300), 9, 0
LOCATE 23, 47: PRINT "DIRECTION OF MOVEMENT"; CHRS(26)
PUT (250, 60), array, PSET
PUT (225, 60), array, PSET
PUT (200, 60), array, PSET
PUT (170, 60), array, PSET
PUT (140, 60), array, PSET
PUT (110, 60), array, PSET
PUT (80, 60), array, PSET
PUT (50, 60), array, PSET
PUT (20, 60), array, PSET
LOCATE 38, 47: PRINT "4. SQUAD FILE"
VIEW

query the user for his formation and location choices

140 LOCATE 40, 1: INPUT "Input formation number <e.g. 3>", n%
LOCATE 41, 1: INPUT "Input diLection of movement in degrees

& <e.g. 45>", dir
LOCATE 42, 1: INPUT "Input squad leader z and y grid
& coordinates <e.g.200,200>", z, y
X:1 z - 8: yl = y - 10

'convert the user input direction from degrees to radians

dir a (90 - dir) * 3.141 / 180

'update soldier's location attributes based on user choice

ON n% GOTO 141, 142, 143, 144
PRINT "TRY AGAIN"
GOTO 140

I 1st formation
141 CLS
soldat(1, 3) :z: soldat(1, 4) = y
soldat(5, 3) x + 36 * COS(2.55 + dir): soldat(5, 4) = y + 36
& * SIN(2.55 + dir)
soldat(3, 3) = i + 30 * COS(1.57 + dir): soldat(3, 4) z y + 30
& * BIN(1.57 + dir)
soldat(2, 3) = x + 56 * COS(1.39 + dir): soldat(2, 4) z y + 56
& * SIN(1.39 + dir)
soldat(4, 3) = x + 65.7 * COS(l,72 + dir): soldat(4, 4) * y +
& 65.7 * SIN(1.72 + dir)
soldat(9, 3) a x + 36 * COS(-2.55 + dir): soldat(9, 4) : y +
& 36 * SIN(-2.55 + dir)

186



soldat(7, 3) x + 30 * COS(-1.57 + dir): soldat(7, 4) =y +
& 30 * SIN(-1.57 + dir)
soldat(6, 3) = x + 56 * COS(-1.39 + dir): soldat(6, 4) x y +
& 56 * SIN(-1.39 + dir)
soldat(8, 3) =x + 65.7 * COS(-1.72 + dir): soldat(8, 4) =y
& + 65.7 * SIN(-1.72 + dir)
GOTO 145

i42 CLS 2nd formation

soldat(l, 3) = 'x: soldat(1, 4) =y
soldat(2, 3) =x + 75 * COS(dir): soldat(2, 4) = y + 75
& SIN(dir)
soldat(3, 3) = x + 56 * COS(-.464 + dir): soldat(3,, 4) = y +
& 56 * SIN(-.464 +- dir)
soldat(4, 3) =x + 56 *COS(.464 + dir): soldat(4, 4) =y + 56
& * SIN(.464 + dir)I
soldat(5, 3) = x + 56 *COS(-1.11 + dir): soldat(5, 4) = y +
& 56 * SIN(-1.11 + dir)
soldat(6, 3) =x + 25 * COS(3.141 + dir): soldat(6, 4) = y +
& 25 * SIN(3.141 + dir)
soldat(7, 3) = z + 56 *COS(3.6 + dir): soldat(7, 4) = y + 56

& *SIN(3.6 + dir)
soldat(8, 3) z x + 56 *COS(-3.6 + dir): soldat(8, 4) = y +56
& *SIN(-3.6 + dir)
soldat(9, 3) = x + 90 *COS(2.55 + dir): soldat(9, 4) = y + 90
& *SIN(2.55 + dir)
GOTO 145

3rd choice
143 CLS
soldat(l, 3) =x: soldat(1. 4) y
soldat(2, 3) = + 95 * COS(dir): soldat(2, 4) =y + 95*
& BIN(dir)
soldat(3, 3) = x + 70 * COS(-.464 + dir): Boldat(3, 4) =y +
& ý70 * SIN(-.464 + dir)
soldat(4, 3) = x + 70 *COS(..464 + dir): soldat(4, 4) = y + 70
& * SIN(.464 + dir)
soldat(5, 3) = + 40 *COS(dir): soldat(5, 4) =y + 40 *
& SIN(dir)
soldat(6, 3) = x + 30 *COS(3.141 + dir): soldat(6, 4) =y +
& 30 * SIN(3.141 + dir)
soldat(7, 3) = x + 56 *COS(3.6 + dir): soldat(7, 4) =y + 56
& * SIN(3.6 + dir)
soldat(8, 3) = z + 56 *COS(-3.6 + dir): soldat(8, 4) z y + 56
& * SIN(-3.6 + dir)
soldat(9, 3) =: + 75 *COS(3.141 + dir): soldat(9, 4) =y +
& 75 * SIN(3.141 + dir)
GOTO 145

4th formation

187



144 CLS
soldat(1, 3) =: soldat(1D 4) = y
soldat(2, 3) = x + 100 * COS(dir): soldat(2, 4) y+ 100 *
& SIN(dir)
soldat(3, 3) = x + 75 * COS(dir): soldat(3, 4) = y + 75 *
& SIN(dir)
soldat(4, 3) = 2 + 50 COS(dir): soldat(4o 4) = y + 50 *
& SIN(dir)
soldat(5, 3) = a + 25 * COS(dir): soldat(5, 4) z y + 25 *
& SIN(dir)
soldat(6, 3) = x + 25 * COS(3.141 + dir): soldat(6, 4) = y +
& 25 * SIN(3.141 + dir)
soldat(7, 3) = x + 50 * COS(3.141 + dir): soldat(7, 4) = y +
& 50 * SIN(3.141 + dir)
soldat(8, 3) = x + 75 * COS(3.141 + dir): soldat(8, 4) = y +
& 75 * SIN(3.141 + dir)
soldat(9, 3) = x + 100 * COS(3.141 + dir): soldat(9, 4) a y +
& 100 * SIN(3.141 + dir)

'update all soldier's location to reflect user input direction
145 FOR i = 1 TO 9

soldat(i, 8) dir
NEXT i
END SUB

SUB frame (left%, right%, top%, bottom%, fore%, back%)

.'FRAME draws the frames seen on presentation saLeens

COLOR fore%, back%
LOCATE top%, left%: PRINT CER$(201)

LOCATE top%, right%: PRINT CHR$(187)
LOCATE bottom%, left%: PRINT CHR$(200)
LOCATE bottom%, right%: PRINT CHR$(188)

FOR vert% a top% + I TO bottom% - 1
LOCATE vert%, left%: PRINT CHR$(186)
LOCATE vert%, right%: PRINT CHR$(186)

NEXT vert%
horiz% x right% - left% - 1
hline$ = STRING$(horiz%, 205)
LOCATE top%, left% + 1: PRINT hline$
LOCATE bottom%, left% + 1: PRINT hline$
END SUB

188



SUB help

'Subprogram HELP is the main menu for the help screens. It
'queries the user for the specific help function the user
'desires, then accesses that file

DO
CLS
left% = 10: right% = 70: top% = 4: bottom% = 23: fore% 15:
back% = 1
WIDTH 80, 25
CALL frame(left%, right%, top%, bottom%, fore%, back%)
LOCATE 6, 30: PRINT " HELP ME:NU"
LOCATE 8, 20: PRINT "1) Help with terrain editor"
LOCATE 10, 20: PRINT "2) Help with soldier attribute editor"
LOCATE 12, 20: PRINT "3) Help with Pr(hit) editor"
LOCATE 14, 20: PRINT "4) Help with event editor"
LOCATE 16, 20: PRINT "5) About SPARTAN"
LOCATE 18, 20: PRINT "6) Exit to main menu"
4 LOCATE 19, 20: ch$ = INPUTS(I)
SELECT CASE ch$
CASE "1"

CALL maphelp
CASE "2"

CALL joehelp
CASE "3"

CALL phithelp
CASE "4"

CALL evnthelp
CASE "5"
CALL aboutspartan
CASE "6"
EXIT DO
CASE ELSE

BEEP
LOCATE 20, 20: PRINT "Try again, GOMER"

GOTO 4
END SELECT
LOOP
END SUB

SUB joeatrib

'JOEATRIB allows the user to edit a soldier's current
attribute 'values.

150 CLS
CALL frame(10, 70, 1, 7, 15, 9)
LOCATE 2, 15: INPUT "Which side do you want to edit? R/B",

189



ans$
IF ans$ = "B" OR ans$ "b" THEN
strng$ = "BLUE"
GOTO 151
END IF
strngS = "RED"
151 LOCATE 4, 25: PRINT strngS; " SOLDIER ATTRIBUTES"

'queries the user to ensure edited soldeir is a soldier

152 LOCATE 6, 21: INPUT "Which soldier do you wish to edit?";
ans
IF ans > 12 THEN
LOCATE 23, 4: PRINT "TRY another soldiersoldier"
GOTO 152
END IF

'display current values of soldier's attributes

CLS
LOCATE 2, 20: PRINT "OLD ATTRIBUTES"
LOCATE 2, 35: PRINT "NEW ATTRIBUTES"
LOCATE 6, 4: PRINT "SOLDIER #"
LOCATE 7, 4: PRINT "SIDE"
LOCATE 8, 4: PRINT "DUTY POSITION"
LOCATE 9, 4: PRINT "X GRID COORD"
LOCATE 10, 4: PRINT "Y GUID COORD"
LOCATE 11, 4: PRINT "#GRENADES"
LOCATE 12, 4: PRINT "TIME FIRED"
LOCATE 13, 4: PRINT "NOT USED"
LOCATE 14, 4: PRINT "MOVEMENT DIRECTION"
LOCATE 15, 4: PRINT "MOVEMENT STATUS"
LOCATE 16, 4: PRINT "POSTURE"
LOCATE 17, 4: PRINT "WEAPON TYPE"
LOCATE 18, 4: PRINT "ROUNDS PER MAGAZINE"
LOCATE 19, 4: PRINT "NUMBER MAGAZINES"
LOCATE 20, 4: PRINT "TARGET ID"
LOCATE 21, 4: PRINT "WOUND STATUS"
LOCATE 6, 15: PRINT ans
FOR i a 1 TO 15

LCCATE 6 + i, 25: PRINT soldat(ans, i)

'input new attribute values
LOCATE 6 + i, 40: INPUT ; soldat(ans, i)

NEXT i
LOCATE 23, 1
INPUT "Do you wish to alter anymore soldiers? Y/N"; ans$
IF ans$ "Y" OR ans$ = "y" GOTO 150
END SUB

SUB los

190



'LOS draws the line of sight cone for user input location,'range, and stop and start angles.

"copy the map from the undisplayed screen to the visible one

160 PCOPY 1, 0

'query the user for input

LOCATE 1, 1: INPUT "Input observer's location. (Input X,Y)
& (example <900,900> )"; x, y
LOCATE 2, 1: INPUT "Line of sight cone(start degree,end
& degree) (exapmle <45,275>)"; start, fin
LOCATE 3, 1: INPUT "Line of sight radius (between 0 and 1000
& meters)"; r

'convert start and finish angles from degrees to radians

IF start >= 0 AND start <= 90 THEN
start = (90 - start) * 3.141 / 180

ELSE
start = (360 - (start - 90)) * 3.141 / 180

END IF

IF fin >= 0 AND fin <= 90 THEN
fin = (90 - fin) * 3.141 / 180

ELSE
fin = (360 - (fin - 90)) * 3.141 / 180

END IF

PCOPY 1, 0 'refresh the screen

'draw the line of sight cone
CIRCLE (x, y), r, 0, -fin, -start, 340 / 650

'determine observer elevation

hexx = INT(x / 20 + 1): hexy = INT(y / 20 + 1)
z1 = mapl(hexx, hexy, 3) + 1.8

'if observer is in the woods, assign the woods flag w1=1
IF mapl(hexx, hexy, 2) < 1 THEN

W1 = 1
ELSE

W1 = 0
END IF

w MW

'loop to check los every .05 radians around line of sight cone
FOR k = fin TO start STEP .05

191



'determine the target location (x2,y2)
x2 = x + r * COS(k)
IF x2 < 1 THEN x2 = 1
IF x2 >= 1000 THEN x2 = 999
y2 = y + r * SIN(k)
IF y2 < 1 THEN y2 = 1
IF y2 >= 100i• THEN y2 = 999

'determine target elevation
z2 = .9 + mapl(INT(x2 / 20 + 1), INT(y2 / 20 + 1), 3)

'determine slope of observer-target line
slope = (z2 - z1) / r

'loop every meter on the redius from observer to target

FOR i = 1 TO r
'if line is off the map go to next angle

xn = xl+ i * COS(k): yn = y + i * SIN(k)
IF 0 >= xn OR xn >= 1000 THEN COTO 166
IF n >= yn OR yn >= 1000 THEN GOTO 166

'if the eleveation sheck is in the same terrain cell, go to
'the next meter along -he radius

IF INT(xn / 20 + 1) = hex: AND INT(yn / 20 + 1) = hexy
& THEN GOTO 165

'else compute the new elevation of the intervening terrain
'acl

hexx = INT(xn / 20 + 1): hexy a INT(yn / 20 + 1)
IF w = 1 AND mapl(hexx, hexy, 2) = 1 THEN w = 0

'if the cell is iin the woods and the observer is out of the
'woods factor in the elevation of the trees

IF w = 0 AND mapl(hexx, hexy, 2) < 1 THEN
snow = mapl(hexx, hexy, 3) + 10 / mapl(hexx, hexy, 2)

ELSE
snow = mapl(hexx, hexy, 3) + .9

END IF
'if the new elevation is less than the observer-target line

'goto the next terrain cell
IF snow <= z1 + i * slope THEN GOTO 165

'if the terrain in the current cell blocks los, start drawing
'a line to indicate los is blocked

xold a xn: yold z yn: t z i + 1
slopenow = (znow - z1) / i

'loop checks to see if some terrain can be seen along the
'observer-target line, event though the line is blocked

FOR j t t TO r
xn •x + * COS(k): yn y + j SIN(k)
IF 0 >= xn OR xn >= 1000 THEN GOTO 166

192

- -- -- ---- -- '-. -I



IF 0 >= yn OR yn >= 10OC THEN GOTO 166
IV INT(xn / 20 + 1) = hexx AND INT(yn / 20 + 1)

& hexy THEN GOTO 164
hexx = INT(xn / 20 + 1): hexy = INT(yn / 20 + 1)'continue to check if the observer-target line is in the

'wooded area
IF w = 1 AND mppl(hexx, hexy, 2) = 1 THZN w = 0
IF w = 0 AND inapl(hexx, hexy, 2) < 1 THEN

znext = (mapl(hexx, hexy, 3) 1- 10 / (mapl(hexx, hexy, 2)))
ELSE

znext = (mapl(hexx, hexy, 3) + .9)
END IF

'if the los is blocked draw a line
IF znext < znow THEN GOTO 162

'if the elevation is the new cell is higher than the previous
'terrain (i.e. the obsever can see it)go to the next terrain
'cell to see if the observer can see it

IF slopenow > (znext - z1) j i THEN GOTO 162
slopenow = (znext - z1) / j
znow = znext
xosd = xn: yold = yn
c0TC 164

'if the terrain cannot be seen, draw a line
162 LINE (xold, yold)-(xn, yzu), 0

xold = xn: yold = yn
164 NEXT j

GOTO 166
165 NEXT i
w = wl
166 NEXT k
INPUT "Do you want to continue? Y/N"; anaS
IF ans$ = "Y" OR ansS "y" THEN GOTO 160
END SUB

SUB map (opt%)

'MAP draws the screen map. It also calls the map editor
'subprograms referenced by opt%

SHARED 1 'l is the flag that defines whether an obstacle has
'been emplaced by the user

CLS
SCREEN 9, , 0, 0
WIDTH 80, 43
WINDOW (0, 0)-(1000, 1000)
'paint the screen the white background color
PAINT (500, 500), 15

draw the wooded areas

19Z



LINE (40, 0)-(0, 380), 2, BF
LIKE (40, 0)-(160, 360), 2, BF
LINE (160, 0)-(200, 320), 2, BF
LINE (200, 0)-(220, 300), 2, BF
LINE (220, 0)-(280, 280), 2, BF
LINE (280, 0)-(283, 280), 9, BF
'draw the stream
LINE (220, 280)-(283, 283), 9, B3
LIKE (220, 280)-(223, 300), 9, BF
LINE (200, 300)-(220, 303), 9, BF
LIKE (0, 380)-(40, 383), 9, or
LINE (40, 360)-(160, 365), 9, IF
LINE (40, 383)-(43, 360). 9, BF
LINE (160, 360)-(163, 320), 9, BF
LINE (160, 320)- (200, 323), 9, oF
LINE (200, 323)-(203, 300), 9, 1r

'draw the angled red roads
FOR i a I TO 25
LINZ ((i - 1) * 20, 500 - 2 * (1 - 1))-(i '20, 500-3-2 *
(i - 1)), 4, IF
NEXT i
FOR i a 25 TO 50
LINE ((1 - 1) * 20, 449 + 3 * (i - 25))-(1 * 20, 449 - 3 + 3
* (i - 25)), 4, nF
NEXT i
LINE (500, 0)-(505, 1000), 0, 3
FOR i x 0 TO 1000 STEP 40
LINE (501, 1)-(504, 1 + 20), 4, Ir
NEXT ± I
LINE (480, 455)-(480, 465), 0
LINE (160, 840)-(240, 880), 2, Ir
FOR ± 1 TO 50
LINE (480 - (1 - 1) * 15, 465 + (1 - 1) * 20)-(480 - 1 * 15,
465 + ± * 20), 0
NEXT £
LINZ (330, 665)-(250, 665), 0
FOR £ a 1 TO 25
LINE (250 - (1 -1)** 20, 665 + (1 - 1) * 8)-(250 - £ * 20,
665 4 1 * 8), 0
NEXT i
FOR 1 a 1 TO 25
LIN• (750 + (1- 1) '10, 0 + (i - 1) Q 15)-(750 + i * 10, 0
+ ± * 15), 0
NEXT i
FOR i a 1 TO 25
LINZ (500 + (1 -1) * 18, 750 - (1 - 1) * 9)-(500 + i * 18,
750 L * 9), 0

'draw the contour lines
CIRCLZ (150, 8O8), 50, 6,o, # p45
CIRCLE (150, 90o), 200, 6,, , .5

194



CIRCLE (150, 900), 600, 6, , , .2
CIRCLE (1000, 800), 1100, 6, , .3
LINE (1000, 840)-(900, 720), 2, BF
CIRCLE (1000, 800), 70, 6, , , .2
CIRCLE (1000, 800), 120, 6, , , .25
CIRCLE (50, 50), 100, 6, , , .5
CIRCLE (50, 50), 200, 6, , , .3

if an obstacle is present draw it, else skip this portion
IF 1 = 0 THEN GOTO.170
' loop to draw an obstacle
FOR i = 1 TO 1LINE (lin(i, 1), lin(i, 2))-(lin(i, 3), lin(i, 4)), 0

ml (lin(i, 4) - lin(i, 2)) / (lin(i, 3) - lin(i, 1))

b = lin(i, 2) - m * lin(i, 1)

'loop t draw the cross hatching on the wire
FOR j = 0 TO (lin(i, 3) - lin(i, 1)) STEP 20

x lin(i, 1) + j
y lin(i, 2) + m * J
LINE (x - 4, y + 4)-(z + 4, y - 4), 0
LINE (a + 4, y + 4)-(x - 4, y - 4), 0

NEXT j
NEXT i

'draw the magenta grid lines every 200 meters
170 FOR i = 200 TO 800 STEP 200
LINE (i, 0)-(i, 1000), 13
LINE (0, i)-(1000, i), 13
NEXT i

'copy the map to the hidden screen

PCOPY 0, 1

'call the approriate subprogram based on user input options

ON opt% GOTO 171, 172, 173, 174

171 LOCATE 1, 1: PRINT "HIT <CR> to continue." 'view map
ansS = INPUTS(1)
GOTO 175

172 CALL wire 'emplace obstacle
LOCATE 1, 1: PRINT "HIT <CR> to continue."
ans$ = INPUT$(1)

GOTO 175

173 CALL contour 'view contour interval data
LOCATE 1, 1: PRINT "Hit <CR> to exit map"
e$ = INPUTS(1)
GOTO 175

174 CALL los 'line of sight checks

195



175 END SUB

SUB mapp

'MApp is the main menu for the terrain editor. It loads the
'default data into data arrays, allows the user to view data,
'input obstacles, and creates the .eap file for SPARTAN.

CLS
OPEN "mapl.dat" FOR INPUT AS #1
COLOR 15, 1
CLS
LOCATE 10, 20: PRINT "STANDBY WHILE TERRAIN ARRAY IS LOADED"

'load data array with default data
FOR i = 1 TO 50

FOR j z 1 TO 50
INPUT #1, mapl(i, J, 1), mapl(i, J, 2), mapl(i, J, 3)

NEXT
NEXT i
'LOSE #1

DO
CLS
left% = 10: right% = 70: top% a 4: bottom% = 22: fore% = 15:
& back% = 1
WIDTH 80, 25
CALL frame(left%, right%, top%, bottom%, fore%, back%)
LOCATE 6, 20: PRINT "TERRAIN DATA FILE EDITOR MENU"
LOCATE 8, 20: PRINT "1) Look at map"
LOCATE 10, 20: PRINT "2) Add wire obstacle"
LOCATE 12, 20: PRINT "3) View elevation data and contour
& levels"
LOCATE 14, 20: PRINT "4) View terrain data"
LOCATE 16, 20: PRINT "5) Line of sight"
LOCATE 18, 20: PRINT "6) Terrain Editor Help"
LOCATE 20, 20: PRINT "7) Exit to main menu"
6 LOCATE 21, 20: ch$ = INPUT$(1)
SELECT CASE chS
CASE "i"

COLOR 15, 0
CALL maD(1)

CASE "2"
COLOR 15, 0
CALL map(2)

CASE "3"
COLOR 15, 0
CALL map(3)

CASE "4"
CALL TERRAINDAT

CASE "5"

196

7



D3

COLOR 15, 0
CALL map(4)

CASE "6"
CALL maphelp
CASE "7"
CLS
CALL frame(10, 70, 4, 7, 15, 1)
LOCATE 5, 25: PRINT "STANDBY WHILE DATA FILE LOADS"

'load edited data into .exp file

OPEN "mapl.exp" FOR OUTPUT AS #2
FOR i = 1 TO 50

FOR j a 1 TO 50
WRITE #2, mapl(i, J, 1), mapl(i, J, 2), mapl(i, J, 3)

NEXT j
NEXT i
CLOSE #2
EXIT DO
CASE ELSE

BEEP
LOCATE 20, 20: PRINT "Try again, GOMER"
GOTO 6

END SELECT
LOOP
END SUB

SUB opening

Opening screen for the preprocessor

CLS
left% 1 1: right% = 80: top% = 3: bottom% = 22: fore% = 15:
& back% = 9
CALL frame(left%, right%, top%, bottom%, fore%, back%)
left% a 9: right% = 72: top% = 10: bottom% a 16: fore% = 15:
& back% = 9
CALL frame(left%, right%, top%, bottom%, fore%, back%)
LOCATE 13, 25: PRINT " SPARTAN I1 COMBAT MODEL"
LOCATE 19, 22: INPUT "Press <Enter> when ready to continue",
& start
END SUB

SUB phit

'PHIT is the subprogram that is the Pnit editor main menu. It
'reads the default data files into arrays, calls to various
'editor functions as the user inputs choices, and creates the
'.exp data files for SPARTAN

197



CLSCOLOR 15, 9

CLS
LOCATE 10, 20: PRINT "STANDBY WHILE ACCURACY DATA IS LOADED"
OPEN "ml6.dat" FOR INPUT AS #1
OPEN "ak74.dat" FOR INPUT AS #2
OPEN "saw.dat" FOR INPUT AS #3
FOR i = 1 TO 8

FOR j = 1 TO 4
INPUT #1, pl(i, j)
INPUT #2, p2(i, j)
INPUT #3, p3(i, J)

NEXT j
NEXT i

CLOSE #1: CLOSE #2: CLOSE #3
DO
CLS
left% = 10: right% = 70: top% = 4: bottom% = 18: fore% = 15:
& back% = 9
WIDTH 80, 25
CALL frame(left%, right%, top%, bottom%, fore%, back%)
LOCATE 6, 20: PRINT "WEAPPON ACCURACY DATA FILE EDITOR ME.U"
LOCATE 8, 20: PRINT "1) Review accuracy data"
LOCATE 10, 20: PRINT "2) Add weapon type"
LOCATE 12, 20: PRINT "3) Phit Editor HELP"
LOCATE 14, 20: PRINT "4) Exit to main menu"
3 LOCATE 21, 20: ch$ = INPUT$(I)
SELECT CASE ch$
CASE "1"

CALL cphit
CASE "2"

CALL addwpn
CASE "3"
CALL phithelp
CASE "4"
CLS
CALL frame(10, 70, 4, 7, 15, 9)
LOCATE 5, 25: PRINT "STANDBY WHILE DATA FILE LOADS"
OPEN "PIHIT.exp" FOR OUTPUT AS #4
OPEN "P2HIT.exi*" FOR OUTPUT AS #5
OPEN "P3HIT.exp" FOR OUTPUT AS #6
FOR i = 1 TO 8
FOR j = 2 TO 4

PRINT #4, pl(i, J)
PRINT #5, p2(i, j)
PRINT #6, p3(i, J)
NEXT j
NEXT i

CLOSE #4
CLOSE #5
CLOSE #6
EXIT DO
CASE ELSE

198



BEEP
LOCATE 16, 20: PRINT "Try again, GOMER"

GOTO 3
END SELECT
LOOP
END SUB

SUB red (opt%, r)

'RED serves the same function for the RED soldiers that BLUE
'does for BLUE forces. It prints out read soldier attribute
'values and allows the user to view, add, delete or edit those
'values.

CLS
WIDTH 80, 25
CALL frame(10, 70, 4, 7, 15, 9)

'view current soldier attribute values

LOCATE 5, 30: PRINT "RED SOLDIER DATA"
LOCATE 8, 1: PRINT "SOLDIER DUTY LOCATION MOVEMENT

STATUS POSTURE WEAPON"
LOCATE 9, 1: PRINT " POSITION DIRECTION

j-0
FOR i = 1 TO 12

IF soldat(i, 1) > -1 THEN GOTO 216
j= j+l
LOCATE 10 + J, 3: PRINT i
LOCATE 10 + J, 11: ON soldat(i, 2) GOTO 201, 202, 203, 204,

205
201 PRINT "SQD LDR"

GOTO 206
202 PRINT "TEAM LDR"

GOTO 206
203 PRINT "GRENADIER"

GOTO 206
204 PRINT "SAW GUNNER"

GOTO 206
205 PRINT "RIFLEMAN"

206 LOCATE 10 + J, 23: PRINT USING "##"; soldat(i, 3);
soldat(i, 4)
LOCATE 10 + J, 36: PRINT USING "##t"; soldat(i, 8) * 180 /
3.1415
LOCATE 10 + J, 46:

IF soldat(i, 9) = 0 THEN
PRINT "STATIONIARY"

GOTO 207
END IF

199

/4.\



-v

PRINT "MOVING"
207 LOCATE 10 + J, 57: ON soldat(i, 10) GOTO 208, 209, 210
208 PRINT "STANDING"
GOTO 211
209 PRINT "CROUCHING"
GOTO 211
210 PRINT "PRONE"
211 LOCATE 10 + J, 69: ON soldat(i, 11) GOTO 212, 213, 214,
215
212 IF soldat(i, 2) 3 THEN
PRINT "M203"
GOTO 216
END IF
PRINT "M16A2"
GOTO 216
213 PRINT "AK-74"
GOTO 216
2'4 PRINT "SAW"
GOTO 216
215 PRINT "OTHER"
216 NEXT i
LOCATE 1, 25: PRINT "HIT <CR> to continue"
e$ a INPUTS(1)

'based on user choice: opt%=O---depart editor
1---delete one or more red soldiers
2---add one or moore soldiers

IF opt% = 0 THEN GOTO 221

IF opt% = 2 THEN GOTO 218

'delete a soldier

217 LOCATE 11 + J: INPUT "Which soldier do you want to
delete?", d%
IF soldat(d%, 1) > -1 THEN
PRINT "The number you input is not a red soldier, try again."
GOTO 217
END IF
FOR i = 1 TO 15
soldat(d%, i) = 0
NEXT i
GOTO 221

' Add one or more soldiers

218 CLS
LOCATE 2, 20: PRINT "INPUT RED SOLDIER DATA"
LOCATE 6, 4: PRINT "DUTY POSITION"
LOCATE 7, 4: PRINT "X GRID COORD"
LOCATE 8, 4: PRINT "Y GRID COORD"
LOCATE 9, 4: PRINT "#GRENADES"
LOCATE 10, 4: PRINT "TIME FIRED"

200



LOCATE 11, 4: PRINT "NOT USED"
LOCATE 12, 4: PRINT "MOVEMENT DIRECTION"
LOCATE 13, 4: PRINT "MOVEMET•- - STATUS"
LOCATE 14, 4: PRINT "POSTURE"
LOCATE 15, 4: PRINT "WEAPON TYPE"
LOCATE 16, 4: PRINT "ROUNDS PER MAGAZINE"
LOCATE 17, 4: PRINT "NUMBER MAGAZINES"
LOCATE 18, 4: PRINT "TARGET ID"
LOCATE 19, 4: PRINT "WOUND STATUS"
FOR i = 1 TO r
FOR z 1 TO 12
IF soldat(J, 2) > 0 THEN GOTO 219
LOCATE 3, 18 + 1 * 10: PRINT "SOLDIER"; i
soldat(j, 1) = 0 V

FOR k = 2 TO 15
LOCATE 3 + k, 18 + i * 10: INPUT soldat(j, k)

NEXT k
GOTO 220
219 NEXT j
220 NEXT i
221 END SUB

SUB SOLDIER

'SOLDIER is the main menu for the soldier attribute editor - -

'It reads default data into data arrays, allows the user to
'access editor functions, and reads the altered data array
'into the .exp file for SPARTAN.

CLS
OPEN "joe.dat" FOR INPUT AS #I
COLOR 15, 9
CLS
LOCATE 10, 20: PRINT "STANDBY WHILE SOLDIER DATA ARRAY IS
LOADED"

FOR i = 1 TO 12 'read data file
FOR j = 1 TO 15

INPUT #1, soldat(i, j)
NEXT j

NEXT i
CLOSE #1

DO
CLS
left% = 10: right% = 70: top% = 4: bottom% = 23: fore% = 15:
back% = 9
WIDTH 80, 25
CALL frame(left%, right%, top%, bottom%, fore%, back%)
LOCATE 6, 20: PRINT "SOLDIER DATA PILE EDITOR MENU"

201



LOCATE 8, 20: PRINT "1) Look at Blue Squad"
LOCATE 10, 20: PRINT "2) Look at Red Squad"
LOCATE 12, 20: PRINT "3) Delete soldiers"
LOCATE 14, 20: PRINT "4) Add soldiers"
LOCATE 16, 20: PRINT "5) Edit soldier attributes"
LOCATE 18, 20: PRINT "6) Pick formation and location"
LOCATE 20, 20: PRINT "7) Soldier Editor Help"
LOCATE 22, 20: PRINT "8) Exit to main menu"'
7 LOCATE 21, 20: ch$ : INPUT$(1)
SELECT CASE ch$
CASE "ý1" \

CALL blue(0, 0)
CASE "2"

CALL red(0, 0)
CASE "3"

CALL delete
CASE "4"

CALL add
CASE "5"

CALL joeatrib
CWSE "6"

CALL format
CASE "7"
CALL joehelp
CASE "8"

OPEN "Joe.exp" FOR OUTPUT AS #2 'create .exp file
FOR i v 1 TO 12

FOR J = 1 TO 15
PRINT #2, soldat(i, j)

NEXT j
NEXT i
CLOSE #2

EXIT DO
CASE ELSE

BEEP
LOCATE 22, 20: PRINT "Try again, GOMER"

COTO 7
END SELECT
LOOP
END SUB

SUB TERRAINDAT

'TERRAINDAT allows the user to view the values of the terrain
'cell's three attributes

M'~S
CALL frame(10, 70, 4, 7, 15, 9)

202

S. .. . .;.. . . . . . . . . . . ... . . .'• . .. • . • .. . . . . ... . '•, • , V . ... . . ... ,.. . . . .• . . . . . • . -•. . . . • • .• . . . . ., .



LOCATE 5, 3U: PRINT "TERRAIN DATA FILE" N

LOCATE 11, 1: PRINT "X HEX Y HEX"
LOCATE 12, 1: PRINT "INDEX INDEX"
LOCATE 11, 26: PRINT " MOBILITY ATTENUATION ELEVATION"
LOCATE 12, 26: PRINT " FACTOR FACTOR (meters)"
x = 0

'this controls the amount of cell data appearing on the screen
'to prevent scrolling

VIEW PRINT 13 TO 24
FOR i = 1 TO 50 'load terrain data matrix

FOR j = 1 TO 50
2 x+1
PRINT i, J, mapl(i, J, 1), mapl(i, J, 2), mapl(i, J, 3)
IF z = 10 THEN GOTO 231

230 NEXT j
NEXT i

GOTO 2?2
231 PRINT "Do you want to continue? TIN"
ansS = INPUT$(1)
!F ansS = "y" THEN
2=0

COTO 230
END IF
232 VIEW PRINT
END SUB

SUB wire

'WIRE allows the user to input a wire obstacle and to view it.
'It also creates the obstacle file and alters the mobility
'factor of the terrain cells through which the obstacle
passes.

SHARED 1
PCOPY 1, 0
VIEW (140, 150)-(550, 200), 9, 01=0

240 1 = 1 + 1

squery the user for input

LOCATE 20, 20, 0: PRINT "Input obstacle starting X and Y
coordinates"
LOCATE 21, 22, 0: PRINT "For example <725,856> ."
LOCATE 21, 45, 0: INPUT xl, yl
LOCATE 22, 20, 0: PRINT "Input obstacle ending X and Y
& coordinates"

203



LOCATE 23, 22, 0: PRINT "?or example <345,999> ."
LOCATE 23, 45, 0: INPUT x2, y2
LOCATE 25, 20, 0: PRINT "To view obstacle hit <CR>"
LOCATE 26, 20, 0: eS = INPUT$(1)
VIEW
PCOPY 1, 0

'ensure the obstacle is not vertical (infinite slope)

IF x1 = x2 THEN x2 = x2 + 1
IF x1 > x2 THEN

x a x1: il = x2: x2 = x
y = yl: yl = y2: y2 a y

END IF

lin(l, 1) = xl: lin(l, 2) = yl: lin(l, 3) = x2: lin(l, 4)=y2

'draw the obstacle
LINE (xl, yl)-(x2, y2), 0

'compute equation of obstacle
M - (y2 yl) / (x2 - xl)
b = yl - m * xl

'loop draws cross hatching on obstacle
FOR i 0 TO ABS(x2 - xl) STEP 20

x= x + i
y = yl + m * i
LINE (z - 4, y + 4)-(x + 4, y - 4), 0
LINE (: + 4, y + 4)-(x -4, y - 4), 0

NEXT i

PCOPY 0, 1

'loop to update mobility factor of terrain cells
FOR k = :l TO x2
a = INT(k / 20 +41)
y = INT((m * k + b) / 20 + 1)
mapl(z, y, 1) .1

NEXT k

PCOPY 0, 1
LOCATE 1, 1: PRINT "Hit <CR> to return to Terrain Editor Menu"
eS = INPUT$(1)
PCOPY 1, 0

OPEN "obs.exp" FOR OUTPUT AS #1 'create obstacle file
FOR i = 1 TO 1
WRITE #1, lin(i, 1), lin(i, 2), lin(i, 3), lin(i, 4)
NEXT i
CLOSE #1
END StB

204



Aipendix F: Simulation Code

This appendix contains the program code for the SPARTAN

simulation model. The code is written in QuickBASIC 4.5.

The code is contained in three separate modules.

SPARTAN.bas module contains the simulation code. The module

display.bas contains all the subprograms that deal with user

requested status updates. The module mainhelp.bas contains

all the help files. DISPLAY and ZAINHELP are not included

in this appendix because they consist solely of formatted

display screens of text and data arrays. In addition, all

information contained in the help screens is in the thesis

in Chapter IV and in the user's manual.

The same notation used in Appendix E is in effect in

this appendix.

205

- . . , . \ . i/



/*

SPARTAN Simulation Code *
**Main Module** *

'The main module contains all subprograms that make the
'simulation work: the outer execution loop, initialization
'programs, and the subprograms for all combat processes.
The 'primary function of this first subprogram is to define
all 'subprograms, arrays, and to define the terminating
'conditions. This module also contains the logic that
'terminates the simulation.

'This section declares all subprograms and functions in used
'in the simulation.

DECLARE SUB soldier () 'displays current soldier attribute
'values

DECLARE SUB schevent () 'displays all events.on calendar
DECLARE SUB pottgt () 'displays current detected target list
DECLARE SUB battlestat () 'displays battle statistics
DECLARE SUB killcard () 'displays hit information per weapon

'type
DECLARE SUB explain () 'displays information about how to'use SPARTAN
DECLARE SUB maindisplay () 'main menu for all user requestedfreports
DECLARE SUB explode (zl, yl, rl) 'draws explosions on screen

DECLARE FUNCTION triag! (al, dl, BI) 'triangle function
DECLARE SUB evnt () 'pulls next scheduled event off calendar
DECLARE SUB move (indl, tnow) 'moves soldiers
DECLARE SUB frame (left%,right%,top%,bottom%, fore%, back%)
DECLARE SUB init C) 'initializes all data arrays
DECLARE SUB map () 'draws map
DECLARE SUB schedule (act, iad, T) 'adds events to calendar
DECLARE SUB los (obs, tgt, x, y, x2, y2, r) 'checks line of

' sight from observer to target
DECLARE SUB acquire (obs, time) 'target detection subprogram
DECLARE SUB selct (obs, time) 'target selection subprogram
DECLARE SUB shoot (obs, time) 'direct fire engagement

'subprogram

DECLARE SUB wire (obs) 'obstacle detection subprogram
DECLARE SUB breach (side, tnow)'initiates obstacle breaching
DECLARE SUB endbreach (ind, time)'moves squad through breach
DECLARE SUB refresh () 'refreshes screen
DECLARE SUB impact (tgt) 'determines results of round impact
DECLARE SUB react (tgt, time) 'determines reaction to fire
DECLARE SUB direction (obL, time) 'changes squad's direction
DECLARE SUB indirect (obs, time) 'indirect fire engagements

206



DECLARE SUB adjust () 'alters terminating conditions

'This section defines common arrays and variables that are
'used across all modules.

soldat contains all soldier attribute values
event is the current event calendar
ptgt is the matrix of potential targets
bluecount is the starting number of blue soldiers
redccunt is the starting number of red soldioirs
activeblue is the number of blue sLidiers remaining
activered is the number of red soldiers remaining
timetostop is the flag to stop the simulation '

COMMON SHARED soldato, evento, ptgto, tgtreco,
bluecount, & redcount, activeblue, activered, timetostop

'obs observer ID
'time = current simulation time
'rwire = flag of RED identifying presence of obstacle
'bwire u flag of BLUE identifying presence of obstacle
'rbrch = flag of RED breach status
'bbrch = flag of BLUE breach status
COMMON SHARED obs, time, rwire, bwie, bbrch, rbrch

'DYNAMIC creates the data arrays outside the 64K set aside
by DOS for program execution
'$DYNAMIC

'This section defines the data arrays
DIM SHARED soldat(12, 17) 'matrix of soldier attributes
DIM SHARED event(99, 3) 'event calendar
DIM SHARED ptgt(12, 12) 'potential target list
DIM SHARED tgtrec(8, 4) 'weapons' hit data record
DIM SHARED barray(0 TO 102) 'arra7 containing blue icon
DIM SHARED rarray(O TO 102) 'array containing red icon
DIM SHARED array2(0 TO 102) 'array icon to erase old

soldier's positions
DIM SHARED darray(0 TO 102) 'array containing dead icon
DIM SHARED lin(10, 4) 'obstacle matrix
DIM SHARED thresh(12, 12) 'random threshold observer-target

Pinf values
DIM SHARED woods(10, 4) 'matrix of Pinf values for targets

in wooded areas
DIM SHARED nowoods(10, 4) 'matrix of Pinf values for targets

not in wooded areas
DIM SHARED corl(10, 4) 'cycles resolvable by the observer

for targets not in wooded areas
DIM SHARED p1(8, 3) 'M16A2 Phit table
XIM SHARED p2(8, 3) 'AK74 Phit table

I.:M SHARED p3(8, 3) 'SAW/RPK74 Phit table
DIM SHARED p5(8, 3) 'User input Phit table
DIM SHARED p6(8, 3) 'User input Phit table

207



W ITS

DIM SHARED mapl(50, 50, 3) 'terrain cell data

'This section identifies default terminating conditions
'termevnt = number of events processed
'timestop a simulation time passed
'bluestop = blue soldiers remaining
'redstop a red soldiers remaiving

DIM SHARED termevnt, timestop, bluestop, redstop
LET termevnt a 5000: LET timestop a 350: LET bluestop = 6:
LET & redstop z 1

'turn on function keys
' F(1) accesses the main display menu
ON KEYi() GOSUB 1000

ME(1) ON
' F(2) refreshes the screen
ON KEY(2) GOSUB 2000
KEY(2) ON

'Open the history file
OPEN "history.dat" FOR OUTPUT AS #10
COLOR 15, 9

'Initialize the data arrays
CALL init

'Display expanatory screen
CALL explain
SCREEN 9, , 1, 1
WIDTH 80, 43

'draw the map
CALL map

'initialize startime which is used to tie simulation clock
'advancement to passage of real time
starttime = TIMER
timeon M 1

quit = 0: timetostop a 0: activeblue a bluecount: activered
a & redcount

'Continue processing events until one of the termirating
'conditions is met

DO WHILE timetostop = 0
CALL evnt 'pull the next event off the calendar
quit a quit + 1 'count number of events processed

'check terminating conditions
IF (quit >a termevnt OR time >= timestop OR activeblue

& <ubluestop OR activered <= redstop) THEN timetostop =

208



LOOP

'close history file
CLOSE #10
CLS
LOCATE 10, 4: INPUT "Do you want to see final results?Y/N",
& ansS
IF ansS = "Y" OR ansS = "y" THEN

'show finil results if user requests
CALL soldier
CALL schevent
CALL pottgt
CALL battlestat
CALL killcard
END IF
9 END
1000 :'Turn off advancement of real time while display is

'active. Resume time advancement when control retu:'ns
to the simulation

displaytime = TIMER
CALL maindisplay

CLS
SCREEN 9
COLOR 15, 0
CALL map

starttime = starttime + (TIMER - displaytime)
RETURN

2000 :
CALL refresh
RETURN

SUB acquire (obs, time)

'ACQUIRE is the subprogram that checks all three conditions
'of target acquisition. If the observer is a squad leader
'and there is an obstacle present, the routine calls to WIRE
'to see if the obstacle is detected. The routine then
'checks all enemy soldiers to see if detection is possible.
'If, at any step, detection fails, then the routine begins
'checking the next enemy soldier until all enemy soldiers
'have been checked.

'VARIABLES:
neattime = variable to define start search time for event
losl = flag to denote line of sight
bwire = flag for BLUE obstacle detection
rwire = flag for RED obstacle detection

'sel= flag to denote whether any tarets were selected

209



obs observer ID
* tgt= target ID

SHARED nexttime, losl, bwire, rwire

el = 0

'check soldier for nonnove status or to see if he is dead

IF so~dat(obs, 15)= 0 OR soldat(obs, 1) = 0 THEN
nexttime = time + 100

OTO 98
END IF

'if soldier is not a squad leader continue
IF soldat(obs, 2) > 1 THEN GOTO 95

'else check for obstacle
IF soldat(obs, 1) > 0 AND bwire < 2 THEN OTO 95
IF soldat(obs, 1) < 1 AND rwire < 2 THEN 0OTO 95

CALL wire(obs)

'loop for target detection
95 FOR i = 1 TO 12

'if target is the same side or is not a soldier then check
'next soldier

IF soldat(obs, 1) = soldat(i, 1) OR soldat(i, 1) 0 THEN
99
'assign observer location
xl = soldat(obs, 3): yl = soldat(obs, 4)

'assign target location
x2 = soldat(i, 3): y2 = soldat(i, 4)

'determine observer-target range
range = (((xl - x2) ^ 2 + (yl - y2) " 2) " .5) / 1000

'if range greater than 1000 meters check next target
IF range > 1 THEN 0OTO 99

'if range less than 50 meters then change both target and
'observer to nonmoving status

IF range * 1000 < 50 THEN
soldat(obs, 9) = 0
soldat(i, 9) = 0

END IF

'if the observer has already acquired this target go and
check 'line of sight

IF (ptgt(obs, i) > 0) THEN 0OTO 91

'assign critical value = threshold value for that observer-

210
4

N t .. . . . . - . . . .: . : . . : . . . . . • : ;



' target pair
crit = thresh(obs, i)

'determine if the target is in a wooded area
hexx = INT(soldat(i, 3) 20 + 1)
hexy = INT(soldat(i, 4) 20 + 1)
IF (mapl(hexx, hexy, 1) < 1) THEN GOTO 93

'adjust target dimensions according to target move status
and
'posture

'target non moving
IF soldat(i, 9) < 1 THEN

IF soldat(i, 10) = 3 THEN 'tgt is prone
pinf nowoods(INT(range * 10 + .5), 2)
cor = corl(INT(range * 10 + .5), 2)
GOTO 94
ELSE 'tgt is crouched or standing,
pinf = nowoods(INT(range * 10 + .5),l)
cor = corl(INT(range + 10 + .5),1)
GOTO 94

END IF
END IF

'else the soldier is moving
IF soldat(i,10) = 3 THEN

pinf = nowoods(INT(range * 10 + .5), 4)
cor corl(INT(range * 10 + .5), 4)
GOTO 94

ELSE
pinf = nowoods(INT(range * 10 + .5),3)
cor = corl(INT(range + 10 + .5),3)
GOTO 94

END IF

'target is in the woods
93 IF soldat(i, 9) < 1 THEN

IF soldat(i, 10) = 3 THEN
pinf = woods(INT(range * 10 + .5), 2)
cor = corl(INT(range * 10 + .5), 2) * .775
GOTO 94

ELSE
pinf woods(INT(range * 10 + .5), 1)
cor = corl(INT(range * 10 + .5), 1) * .775
GOTO 94

END IF
END IF

IF soldat(i, 10) = 3 THEN
pinf = woods(INT(range * 10 + .5), 4)
cor= corl(INT(range * 10 + .5), 4) * .775

211

S: \ , .. /'. ,



GOTO 94
ELSE

pinf = woods(INT(range * 10 + .5), 3)
cor = corl(INT(range * 10 + .5), 3) * .775
GOTO 94

END IF

'if the Pinf is less than the threshold, then no detetection
is possible, go to the next target

94 IF pinf < thresh(obs, i) THEN
ptgt(obs, i) 0
GOTO 99
END IF

'If detection is possible, check line of sight
'obs = observer ID, i = target id

91 CALL los(obs, i, xl, yl, x2, y2, range) -
'if los does saot exist, the ptgt value is zeroed out

and the observer checks the next target

IF (losi < 1) THEN
ptgt(obs, i) = 0
GOTO 99

END IF

'If detection is possible, and line of sight exists, then
'see if the observer can detect the target

'if the observer has already detected the target, check the
'next target
IF ptgt(obs, i) > 0 THEN GOTO 99

'if the target is moving or has fired the last 20 time
'units, adjust the target dimensions

IF soldat(i, 9) > 0 OR (time - soldat(i, 6)) < 20 THEN cor =
& cor * 2

'compute pfov

pfov = 1 - EXP(-1 /6.8 * cor * (1.7 + 3.4 * (RND)))

'if the observer has already once to detect the target or if'a squad member has already detected the target adjust the
'Pdet

pdet = pinf * pfov + ABS(ptgt(obs, i))

'Bernoulli trial to see if detection is made
IF (RND > pdet) THEN

212

' ' 7 :/ t " >->,



no detection, annotate the potential target list
'check the next target
ptgt(obs, i) = -. 5 * pdet

GOTO 99
END IF

'detection, annotate the potential target list

ptgt(obs, i) = pdet

'loop to adjust the pdet values for squadmates
FOR k = 1 TO 12

'don't annotate the other side
IF k = i OR soldat(k, 1) <> soldat(obs, 1) THEN GOTO 92
IF ptgt(k, i) > -. 5 AND ptgt(k, i) <= 0 THEN
ptgt(k, i) = ptgt(k, i) - .4 * pdet
END IF

92 NEXT k

'display message on the screen reflecting target detection
IF (soldat(obs, 1) > 0) THEN
strng$ = "Blue"
ELSE
strng$ = "Red "
END IF
LOCATE 1, 1
PRINT USING "& soldier detects enemy at ### ###";

& strngS; soldat(i, 3); soldat(i, 4)

'adjust sel so after all enemy soldiers have been detected,
'a SELECT target event will be scheduled
sel = 1

99 NEXT i

'schedule a select target

IF sel = 1 THEN
CALL schedule(2, obs, time + 5)
GOTO 98
END IF
CALL schedule(1, obs, time + RND * 40)

98 END SUB

213



SUB adjust

'adjust allows the user to alter the simulation terminating
'conditions. Users can alter the number of surviving
'soldiers, the number of events processed, or the simulation
'time. Users can also turn off the linking of simulation
'time to real time and can dictate another random number
'seed.

SHARED bluecount, redcount, timeon
DO
CLS
WIDTH 80, 25 '1
SCREEN 9
COLOR 15, 1
LOCATE 4, 25: PRINT "ADJUSTING TERMINATING CONDITIONS"
LOCATE 6, 4: PRINT "Initial terminating conditions are:"
LOCATE 8, 10: PRINT "1) Total number of events---5000"
LOCATE 9, 10: PRINT "2) Time to stop---350 time units"
LOCATE 10, 10: PRINT "3) 6 Blue soldiers remaining"
LOCATE 11, 10: PRINT "4) 1 Red soldier remaining"
LOCATE 12, 10: PRINT "5) Random number seed---0"
LOCATE 13, 10: PRINT "6) Timer on"
LOCATE 15, 4: INPUT "Input the condition you wish to change
or (7) to quit"; ans$
SELECT CASE ans$
CASE "1"
LOCATE 16, 4: INPUT "Input new number of events (> 50)"; n
IF n < 50 THEN
PRINT "Your input must be greater than 50, try again"
ELSE
termevnt = n
END IF
CASE "2"
LOCATE 16, 4: INPUT "Input new time to stop (> 50)"; n
IF n < 50 THEN
PRINT "Your input must be greater than 50, try again"
ELSE
timestop = n
END IF
CASE "3"
LOCATE 16,4:INPUT "Input new Blue soldiers remaining (> 0)"
n
n = INT(n)
IF n < 1 THEN
PRINT "Your input must be greater than 0, try again"
ELSE
bluestop = n
END IF
CASE "4" -
LOCATE 16,4: INPUT "Input new Red soldiers remaining ( 0)"
n

214



n = INT(n)
IF n < 1 THEN
PRINT "Your input must be greater than 0, .1 again"
ELSE
redstop =.n
END IF
CASE "5"
LOCATE 16, 4: INPUT "Input new random number seed (-32768 <
& seed <32767"; seed
IF seed < -32768 OR seed > 32767 THEN
PRINT "Your seed value is out of range, try again"
ELSE
RANDOMIZE seed
END IF
CASE "6"
LOCATE 16, 4: INPUT "Do you want the simulation clock tied
to real time? Y/N"; aS
IF aS = "Y" OR aS "y" THEN
timeon = 1
ELSE
timeon = 0
END IF
CASE ELSE

EXIT DO
END SELECT
LOOP
END SUB

SUB breach (side, tnow)

'BREACH adjusts the attributes of all squad members that are
'currently enmeshed in a breaching operation. The
'attributes are changed to prone and nonmoving. In
'addition, all moves for that side are deleted from the
'event calendar and an ENDBREACH scheduled.

SHARED rbrch, bbrch

'display message

LOCATE 2, 1: PRINT "Breaching Obstacle"

'alter breaching flag to reflect breach in progress

IF side > 0 THEN bbrch = 2
IF side < 0 THEN rbrch = 2

'loop to delete all move events for that side

FOR 1 = 1 TO 99

215



IF event(i, 1) <> 4 THEN GOTO 139
IF soldat(event(i, 2), 1) = side THEN

event(i, 1) = 0: event(i, 2) = 0: event(i, 3) = 0
END IF

139 NEXT i

'loop to alter soldier attributes
FOR i = 1 TO 12

IF soldat(i, 1) = side THEN
soldat(i, 9) = 0
soldat(i, 10) = 3:soldat(i, 7) x-3

END IF
NEXT i

'schedule an ENDBREACH and a REFRESH screen
FOR i = 1 TO 12

IF soldat(i, 1) = side THEN
x = tnow + 100
CALL schedule(5, i, z)
CALL schedule(8, i, z 50)
GOTO 138

END IF
NEXT i
138 END SUB

SUB direction (obs, time)

'DIRECTION is scheduled when a squad leader detects an
'enemy. The subroutine checks if the squad leader's target
'is more than 25 degrees off the current azimuth. If so, a
'direction change is directed for the squad. Regardless of
'the direction, the squad is directed to come on line,

- 'oriented on the squad leader's direction of travel.

IF soldat(obs, 1) a 0 THEN 202

SHARED nexttime, bbrch, rbrch, bwire, rwire

'identify the side making the breach

side = soldat(obs, 1) '
'display message reflecting formation change

IF side > 0 THEN
strng$ a "Blue"
ELSE
strngS x "Red"
END IF
LOCATE 1, 1: PRINT USING "& squad, adjust formation

216

- -... . ./



"; strngS

'compute observer-target azimuth

x = soldat(obs, 3): y = soldat(obs, 4)
tgt = soldat(obs, 14)
x2 = soldat(tgt, 3): y2 soldat(tgt, 4)
k = ATN(ASS((y2 - y) / (x2 - x)•)
IF (y2 > y) AND (x2 < x) THEN k = 3.14.. - k
IF (y2 < y) AND (x2 < x) THEN k'= k + 3.141
IF (y2 < y) AND (x2 > x) THEN k = -k
IF (yl = y) AND (x2 < x) THEN k = 3.141
dir = k

'check to see if azimuth is greater than 25 degrees

IF ABS(dir - soldat(obs, 8)) < .436 THEN
'no direction change
dir = soldat(obs, 8)

ELSE
' a direction change, if there is wire present, alter the

breach flag so a new breach must be effected

IF side > 0 AND bwire > 0 THEN
bwire = 2
IF bbrch < 2 THEN bbrch = 0

END IF
IF side < 0 AND rwire > 0 THEN

rwire = 2
IF rbrch < 2 THEN rbrch = 0

END IF
END IF

'loop to update soldier location for new formation

FOR 1 -1 TO 12j=i - '
IF soldat(j, 1) = side AND soldat(j, 15) > 0 THEN

soldat(i, 8) = dir
IF i > 9 THEN j = i - 9
IF j = 1 THEN

soldat(i, 3) = x: soldat(i, 4) = y
ELSEIF j = 5 THEN
soldat(i, 3) = x + 36 * COS(2.55 + dir): soldat(i, 4) z y +.
36 * SIN(2.55 + dir)
ELSEIF j = 3 THEN
soldat(i, 3) = x + 30 * COS(1.57 + dir): soldat(i, 4) =y +
30 * SIN(1.57 + dir)
ELSEIF j = 2 THEN
soldat(i, 3) az + 56 * COS(1.39 + dir): soldat(i, 4) = y +
56 * SIN(1.39 + dir)
ELSEIF j = 4 THEN
soldat(i, 3) x z + 65.7 * COS(1.72 + dir): soldat(i, 4) = y

217



+ 65.7 * SIN(1.72 + dir)
ELSEIP j = 9 THEN
soldat(i, 3) = z + 36 * COS(-2.55 + dir): soldat(i, 4) = y +
36 * SIN(-2.55 + dir)
ELSEIF j = 7 THEN
soldat(i, 3) = x + 30 * COS(-1.57 + dir): soldat(i, 4) = y +
30 * SIN(-1.57 + dir)
ELSEIF j = 6 THEN
soldat(i, 3) = z + 56 * COS(-1.39 + dir): soldat(i, 4) = y +
56 * SIN(-1.39 + dir)
ELSEIF j = 8 THEN
soldat(i, 3) = • + 65.7 * COS(-1.72 + dir): soldat(i, 4) = y
+ 65.7 * SN(-1.72 + dir)
END IF
END IF
NEXT i
202 nextti'.e = time + 100
201 END SUB

SUB endbreach (ind, time)

'ENDBREACH is scheduled for 100 time units after a breaching
'operation begins. The subroutine updates the breaching
'flag and the changes the attributes of the breaching
'element to moving and standing. A move is also scheduled.

SHARED nexttime, rbrch, bbrch

side = soldat(ind, 1)

'loop to update soldier attributes

FOR i = I TO 12
IF soldat(i, 1) a side AND soldat(i, 15) > 0 THEN

soldat(i, 10) a 1 : soldat(i, 7) 1
soldat(i, 9) a 1
CALL schedule(4, i, time + .5 * 1)

END IF
149 NEXT i

'update breaching flags

IF side = 1 THEN
bbrch = 1
ELSE
rbrch = 1
END IF

nexttime = time + .5END SUB ., !

218



SUB evnt

'EVNT checks the event calendar for the next scheduled
'event, pulls it from the calendar, checks to see if the
'event should be processed or what until more "real time"
'has advanced, and then calls the subprogram referenced by
'the event.

SHARED nexttime, time, starttime, timeon

'loop to check all calenear event for the first scheduled
'event

24 FOR i = 1 TO 99
'if the event ID = 0, it is empty

IF event(i, 1) < 1 THEN GOTO 10

'if the event time is less than nextime, it is the ranking
'event rofor executiou

IF event(i, 3) < nexttime THEN
opt = i
nexttime = event(i, 3)

FND IF
10 NEXT i

ind = event(opt, 2)
evt = event(opt, 1)
time = nexttime
'zero out the event array row for the pulled event
event(opt, 1) = 0: event(opt, 2) 0: event(opt, 3) = 0 "

'if the soldief was deleted, get another event

IF soldat(ind, 1) = 0 THEN
nexttime = time + 100
GOTO 24

END IF

'if the simulation clock is tied to real time check time
'advancement

IF timeon = 1 THEN
x = (starttime + time) - TIMER
IF x <= 1 THEN GOTO 22
SLEEP INT(x)

END IF

'write the event to the history file

22 WRITE #10, evt, ind, time

219

,j.. --

-.



'display event message on screen

LOCATE 1, 60: PRINT USING "Time now is ###.###"; time
LOCATE 2, 60: PRINT "EVENT "; evt; " ACTOR "; ind
IF time < T THEN eS = INPUT$(1)
T =time

'call the subprogram referenced by the event

ON evt GOTO 11, 12, 13, 14, 15, 16, 17, 18, 19
11 CALL acquire(ind, time)
GOTO 23
12 CALL selct(ind, time)
GOTO 23
13 CALL shoot(ind, time)
GOTO 23
14 CALL move(ind, timz)
GOTO 23
15 CALL endbreach(ind, time)
GOTO 23
16 CALL react(ind, time)
GOTO 23
17 CALL direction(ind, time)
GOTO 23
18 CALL refresh,
GOTO 23
19 CALL indirect(ind, time)
23 END SUB

SUB explode (x, Iy, r)

' EXPLODE drawsiexplosions on the screen

'VARIABLES:
x is the horizontal coordinate

' y is the vertical coordinate
' r is the burst radius

PLAY "t80"
SOUND 250, 2.5
FOR i = 1 TO 25

PLAY "164 nC"
NEXT i
PLAY "MBOOL32EFGEFDC"
Radius = r
FOR c$ = 0 TO Radius STEP .5

CIRCLE (x, y), c#, 4
NEXT c#
FOR i = 1 TO 50

PLAY "164 nO"
NEXT i
END SUB

220



SUB impact (tgt)

'IMPACT determines the results of a hit on a target. This
'subprogram is scheduled by either the SHOOT or the INDIRECT
'subprograms.

SHARED bluecount, redcount, activeblue, activered
x = soldat(tgt, 3): y = soldat(tgt, 4)
side = soldat(tgt, 1)

'if the soldier is already dead, process the next event

IF soldat(tgt, 15) < 1 THEN GOTO 179

'if the soldier is already wounded, his chances of being
'killed increase to 50%

IF soldat(tgt, 15) 1 AND RND > .5 THEN
GOTO 172

ELSE
GOTO 173 .END IF .,

'if the soldier is not wounded, his chances of being killed
'are 30%
IF RND > .7 THEN

'change soldier status to dead, prone, nonmoving
172 soldat(tgt, 15) = 0

soldat(tgt, 10) = 3
soldat(tgt, 9) = 0

'adjust the active soldier count

IF soldat(tgt, 1) < 0 THEN activered = activered - 1
IF soldat(tgt, 1) > 0 THEN activeblue activeblue - 1

'loop to remove all scheduled events from event calendar

FOR i = 1 TO 99
IF event(i, 2) tgt THEN

evernt(i, 1) = 0: event(i, 2) 0: event(i, 3) = 0
END IF

NEXT i

'change icon color

PUT (x, y), darray, PSET

'if the soldier is a squad leader, change of command

221

-. - -- -'



IF soldat(tgt, 2) 1 THEN
FOR i = 1 TO 12

IF soldat(i, 1) <> side THEN GOTO 171
IF soldat(i, 2) = 2 TEEN

soldat(i, 2) 1
GOTO 179

END IF
171 NEXT i

END IF
GOTO 179
ENr IF

'if the soldier is only wounded
'update status to prone, nonmoving, wounded
173 soldat(tqt, 15) 1
so'dat(tgt, 10) = 3
soidat(tgt, 9) = 0
nexttime = 5000
179 END SUB

SUB indirect (tgt, time)

'INDIRECT processes all mortar fire missions. It is
'scheduled during the SELECT target event when the BLUE'squad leader detects two or more targets.

x = soldat(tgt, 3): y = soldat(tgt, 4)

'assign error term to account for map reading error
reference 'the target coordinates sent to the tubes

zl = x + (triag(-100, 0, 100))
yl a y + (triag(-100, 0, 100))

'compute gun-target range

range a ((xl - (-500)) - 2 + (yl - (500)) 2) .5

'compute deflection angle

k x ATN((500 - yl) / (xl + 500))
zmax = xl: xmin = xl: ymax = yl: ymin = yl

'loop to make round launch sounds
FOR j = 1 TO 6

BOUND 250, 2.5
FOR i a 1 TO RND * 20

PLAY "164 nO"
NEXT i

NEXT j

222

/.



'draw gun-target line (to grid sent to tubes)

LINE (xl, yl)-(-500, 500), 4

'loop to compute impact point of each round

FOR i = 1 TO 6

Ocompute horizontal and vertical impact point

x2 = xl + triag(-.08, 0, .08) * range * SIN(k + 1.571) +
& triag(-.02, 0, .02) * range * SIN(k)

y2 = yl + triag(-.02, 0, .02) * range * COS(k) +
triag(-.08,
& 0, .08) * range * COS(k + 1.571)

'compute the mix and min horizontal and vertical impact
points

IF x2 > xmax THEN
xmax = x2

END IF
IF x2 < xmin THEN

xmin = x2
END IF
IF y2 > ymax THEN

ymax = y2
END IF
IF y2 < ymin THEN

ymin= y2
END IF

'draw explosion and make sound

PLAY "MBOOL32E'rG1FDC"
Radius = 2C
FOR c# = 0 TO Radius STEP .5

CIRCLE (x2, y2), c#, 4
NEXT c#
FOR j = 1 TO 20

PLAY "164 nO"
NEXT j

NEXT i

'draw casualty box

LINE(xmax + 13.5, ymax + 13.5)-(xmin - 13.5, ymin -

13.5),0,B

'loop to determine if any soldiers were in casualty box

FOR i = 1 TO 12
IF xmin - 13.5 > soldat(i, 3) OR soldat(i, 3) > xmax +

223



S,,

13.5 & THEN GOTO 211
IF ymin - 13.5 > soldat(i, 4) OR soldat(i, 4) > ymax +

13.5
& THEN GOTO 211

LOCATE 2, 1: PRINT "Hit on soldier "; i

'updatehit record for mortars for kill card

wpn = 7
tgtrec(wpn, 1) = tgtrec(wpn, 1) + 1
IF tgtrec(wpn, 2) < range THEN tgtrec(wpn, 2) = range
IF tgtrec(wpn, 4) = 0 THEN tgtrec(wpn, 4) range
IF tgtrec(wpn, 4) > range THEN tgtrec(wpn, 4) = range
tgtrec(wpn, 3) = tgtrec(wpn, 3) + range

'determine results of impact.

CALL impact(i)
GOTO 213

'determine if soldiers were in suppression box

211 IF xmin - 100 > soldat(i, 3) OR soldat(i, 3) > xmax +
& 100 THEN GOTO 212

IF ymin - 100 > soldat(i, 4) OR soldat(i, 4) > ymax + 100
& THEN GOTO 212

LOCATE 2, 1: PRINT USING " Soldier ## suppressed"; i
soldat(i, 10) 3
soldat(i, 9) 0
GOTO 213

'if no hits were made display message

212 LOCATE 2,1: PRINT "No hits"
213 NEXT i

'loop to delay refresh and allow user to view screen
FOR = 1 TO 100
PLAY "164 nO"
NEXT j
CALL refresh

END SUB

SUB init'*******************,****************** .*********************

'INIT is the subprogram that initializes all data arrays.

CLS
SHARED 1
SHARED bwire, rwire, rbrch, bbrch

224

J. . . ,



//

/

/i

SHARED bluecount, redcount, activeblue, activered
SHARED nexttime
nexttime = 5000
CALL frame(1i, 70, 4, 7, 15, 9)
LOCATE 5, 26: PRINT "STANDBY WHILE DATA FILES LOAD"
OPEN "mapl.exp" FOR INPUT AS #1

'read terrain data file

FOR i = 1 TO 50
FOR j = 1 TO 50

INPUT #1, mapl(i, j, 1), mapl(i, J, 2), mapl(i, J, 3)
NEXT j

NEXT i
CLOSE #1

'read soldier attribute file

OPEN "joe.exp" FOR INPUT AS #1
FOR i = 1 TO 12

FOR j = 1 TO 15
INPUT #1, soldat(i, j)

NEXT j
soldat(i, 16) = soldat(i, 3): soldat(i, 17) = soldat(i, 4)

'update number of starting soldiers

IF soldat(i, 1) > 0 THEN bluecount bluecount + 1
IF soldat(i, 1) < 0 THEN redcount redcount + 1

NEXT i
CLOSE #1

'read obstacle data file

OPEN "obs.exp" FOR INPUT AS #ii=0
bire = 0
rwire = 0

bbrch = 1 X\
rbrch = 1
DO UNTIL EOF(1)
bwire = 2 '2=wire in place no id, l=wire inplace id, O=no \:

wire
rwire = 2
bbrch = 0
rbrch = 0
i + 11 =i

INPUT #1, lin(i, 1), lin(i, 2), lin(i, 3), lin(i, 4)
LOOP
CLOSE #1

'read initial event file

225

- // ..



OPEN "event.exp" FOR INPUT AS #1
FOR i = 1 TO 99

FOR j = 1 TO 3
INPUT #1, event(i, j)
IF EOF(1) THEN GOTO 1

NEXT j
NEXT i
1 CLOSE #1

'read threshold Pinf values

OPEN "thresh.dat" FOR INPUT AS #1
FOR i = 1 TO 12

FOR j = 1 TO 12
INPUT #1, thresh(i, D)

NEXT j
NEXT i
CLOSE #1
'read Pinf data for targets not in wooded areas

OPEN "infnw.dat" FOR INPUT AS #1 /
FOR i = 1 TO 10

FOR j =1 TO 4 /
INPUT #1, nowoods(i, j)

NEXT j
NEXT i
CLOSE #1
'read Pinf data for targets in wooded areas

OPEN "infw.dat" FOR INPUT AS #1
FOR i = 1 TO 10

FOR j = 1 TO 4
INPUT #1, woods(i, j)

NEXT J.
NEXT i
CLOSE #1

'read cycles resolvable by the observer data

CPEN "cor.dat" FOR INPUT AS #1
FOR i = 1 TO 10

FOR j = 1 TO 4
INPUT #1, corl(i, j)

NEXT j
NEXT i

CLOSE #1

'read M16 Phit data
'read AK74 Phit data
'read SAW Phit data

226

• , ,! •-" . -.. . ,-/ :.' • . .



OPEN "plhit.exp" FOR INPUT AS #1
OPEN "p2hit.exp" FOR INPUT AS #2
OPEN "p3hit.exp" FOR INPUT AS #3
FOR i = 1 TO 8

FOR j = 1 TO 3
INPUT #1, pl(i, j)"
INPUT #2, p2(i, j)
INPUT #3, p3(i, j)

NEXT j
NEXT i
CLOSE #1: CLOSE #2: CLOSE #3

'read user Phit data .

OPEN "p4hit.exp" FOR INPUT AS #1
FOR i = 1 TO 8

FOR j = 1 TO 3
IF EOF(1) THEN GOTO 2
INPUT #1, p5(i, j)
IF EOF(1) THEN GOTO 2

NEXT j
NEXT i
2 CLOSE #1

'read user input Phit data

OPEN "p5hit.exp" FOR INPUT AS #1
FOR i = 1 TO 8

FOR j = 1 TO 3
IF EOF(1) THEN GOTO 3
INPUT #1, p6(i, j)
IF EOF(1) THEN GOTO 3

NEXT j
NEXT i
3 CLOSE #1

'call the subprogram that allows the user to alter the
'terminating conditions

CALL adjust
END SUB

SUB los (obs, tgt, x, y, x2, y2, r)

'LOS i., the subprogram that determines line of sight from - .
'the target to the observer. LOS is a factor of terrain
'cell elevation, target posture, observer posture, and the
'visibility of the terrain cell (thir determines if the
'terrain cell contains wooded areas). LOS is called by the
'ACQUIRE and the SHOOT subpzograms.

227



SHARED losi

'convert the range (r) to meters

r r * 1000

'adjust the observer height and target height based on
posture

hex: = INT(x / 20 + 1): hexy = INT(y / 20 + 1)
oht = 1
IF soldat(obs, 10) > 2 THEN oht = .25
IF soldat(obs, 10) = 2 THEN oht = .5
tht = 1
IF soldat(tgt, 10) > 2 THEN tht = .25
IF soldat(tgt, 10) = 2 THEN tht = .5

compute observer and target elevation

z1 = mapl(hexx, hexy, 3) + 1.8 * oht
z2 = mapl(INT(x2 / 20 + 1), INT(y2 / 20 + 1), 3) + 1.8 * tht

'compute slope of observer-target line

slope (z2 - z1) / r

'assign flag wl = 1 if observer is in a wooded area

IF mapl(hezx, hexy, 2) < 1 THEN
wU1

ELSE
w= 0

END IF

'determine angle of observer-target line

k ATN(A2BS((y2 - I (x2 - x)))
IF (y2 > y) AND (x2 < x) THEN k = k + 1.571
IF (y2 < y) AND (W2 < x) THEN k = k - 3.141
IF (y2 < y) AND (x2 > x) THEN k = -k

'loop to check los in every intervening terrain cell

FOR i = 1 TO r
zn = x + i * COS(k): yn = y + i * SIN(k)

'if already checked elevation of terrain cell try next cell

IF INT(xn / 20 + 1) = hexx AND INT(yn I 20 + 1) = hexy
& THEN GOTO 165

'else compute elevation of present cell

22



hex= INT(xn / 20 + 1): hexy INT(yn / 20 + 1)

'check if still in wooded area and adjust elevation
'accordingly

IF w = 1 AND mapl(hexx, hexy, 2) = 1 THEN w = 0

IF w = 0 AND mapl(hexx, hexy, 2) < 1 THEN
znew = mapl(hexx, hexy, 3) + 10 / mapl(hexx, hezy, 2)

ELSE
znew = mapl(hexx, hexy, 3)

END IF

'if elevation of cell does not block los continue to next

cell

IF znew <= z1 + slope * i THEN GOTO 165

'else los is blocked

los1 = 0
GOTO 169

165 NEXT i
'if checked all cell and los is not blocked, then los exists

los1 = 1 V
169 END SUB

SUB map

'MAP is the subprogram that draws the screen map

SHARED 1
SHARED rwire, bwire
SHARED next time
CLS
SCREEN 9, , 0, \0
WIDTH 80, 43
WINDOW (0, 0)-(1000, 1000)

'paints the scr~en the white used to represent clear areas

PAINT (500, 500), 15

'draw the icons for the soldiers and captures them in arrays

a = 100
y = 100

229



Al

'draw blue icon first

'draw head
LINE (x - 1, Y + 8)-(x + !, y + 2), 9, BF
LINE (x - 1.5, y + 5)-(x + 1.5, y + 4), 9, BF
'body
LINE (z - 6, y + 2)-(x + 6, y), 9, BF
LINE (x - 3, y + l)-(x + 4, y - 6), 9, BF
'legs
LINE (x - 1, y 5 5)-(x - 3, y - 14), 9, BF
LINE (x + 21, y - 5)-(x + 4, y - 14), 9, BF
warms

LINE (x - 6, y 4 2)-(x - 7, y - 6), 9, BF
LINE (z + 6, y - 2)-(x + 8, y - 6), 9, BF
GET (93, 108)-(108, 86), barray

'draw red soldier
x = 100: y = 100
LINE (x - 1, Y + 8)-(x + 1, y + 2), 4, SF
LINE (x - 1.5, y + 5)-(x + 1.5, y + 4), 4, BF
LINE (x - 6, y + 2)-(x + 6, y), 4, SF
LINE (x - 3, y + 1)-(x + 4, y - 6), 4, SF
LINE (x 1, y -5)-(x 3, y - 14), 4, BF
LINE (z + 2!, y -5)-(x + 4, y -14), 4, SF

LINE (x - 6, y + 2)-(z - 7, y - 6), 4, BF
LINE (z + 6, y - 2)-(x + 8, y - 6), 4, BF
GET (93, 108)-(108, 86), rarray

'draw dead icon
x = 100: y = 100
LINE (z - 1, y + 8)-(z + 1, y + 2), 3, SF
LINE (x - 1.5, y + 5)-(x + 1.5, y + 4), 3, BF
LINE (z - 6, y + 2)-(z + 6, y), 3, SF
LINE (x- 3, y + 1)-(z + 4, y - 6), 3, BF.
LINE (x - 1, y - 5)-(x - 3, y - 14), 3, BF
LINE (x + 2!, y - 5)-(z + 4, y - 14), 3, BF
LINE (z - 6, y + 2)-(x - 7, y - 6), 3, BF
LINE (x + 6, y - 2)-(x + 8, y - 6), 3, BF
GET (93, 108)-(108, 86), darray

'draw wooded areas

LINE (40, 0)-(0, 380), 2, SF
LINE-(40. 0)-(160, 360), 2, BF
LINE (160, 0)-(200, 320), 2, BF
LINE (200, 0)-(220, 300), 2, BF
LINE (220, 0)-(280, 280), 2, BF
LINE (280, 0)-(283, 280), 9, BF
LINE (220, 280)-(283, 283), 9, BF
LINE (220, 280)-(223, 300), 9, BF
LINE (200, 300)-(220, 303), 9, SF
LINE (0, 380)-(40, 383),9, SF

230



LINE (40, 360)-(160, 365), 9, BF
LINE (40, 383)-(43, 360), 9, BF
LINE (160, 360)-(163, 320), 9, BF
LINE (160, 320)-(200, 323), 9, BF
LINE (200, 323)-(203, 300), 9, BF

'draw red and black roads

FOR i = 1 TO 25
LINE ((i - 1) * 20, 500 - 2 * (i - 1))-(1 * 20, 500 - 3 - 2
* (i - 1)), 4, BF

NEXT i
FOR i = 25 TO 50
LINE ((i - 1) * 20, 449 + 3 * (i - 25))-(i * 20, 449 - 3 + 3
* (i - 25)), 4, BF
NEXT i
LINE (500, 0)-(505, 1000), 0, B
FOR i = 0 TO 100C STEP 40
LINE (501, i)-(504, i + 20), 4, BF
NEXT i
LINE (480, 455)-(480, 465), 0
LINE (160, 840)-(240, 880), 2, BF

FOR ± = I TO 50
LINE (480 - (i - 1) * 15, 465 + (i - 1) * 20)-(480 - 1 * 15,
465 + i * 20), 0
NEXT i
LINE (330, 665)-(250, 665), 0
FOR i = 1 TO 25
LINE (250 - (i - 1) * 20, 665 + (i- I) * 8)-(250 - 1 * 20,
665 + i * 8), 0
NEXT ±
FOR i = 1 TO 25
LINE (750 + (i - 1) * 10, 0 + (1 -1) * 15)-(750 + 1 * 10, 0
+ i * 15), 0
NEXT i
FOR i = 1 TO 25
LINE (500 + (i - 1) * 18, 750 - (i - 1) * 9)-(500 + *18,
750 - ± * 9), 0
NEXT i

'draw contour lines

CIRCLE (150, 880), 50, 6, p p .45
CIRCLE (150, 900), 200, 6, , , .5
CIRCLE (150, 900), 600, 6, , , .2
CIRCLE (1000, 800), 1100, 6, , , .3
LINE (1000, 840)-(900, 720), 2, BF
CIRCLE (1000, 800), 70, 6, , , .2
CIRCLE (1000, 800), 120, 6, ,. .25
CIRCLE (50, 50), 100, 6, , , .5
CIRCLE (50, 50), 200, 6, , , .3

231



S\\

'draw obstacle, if it exists

IF 1 0 THEN GOTO 20
FOR 1 :1 TO 1LINE (lin(i, 1), fin(i, 2))-(fin(i, 3), lin(i, 4)), 0 /
M = (in(i, 4) - fin(i, 2)) / (fin(i, 3) -lin(i, 1)) .

B = lin(i, 2) - m * lin(i, 1)
FOR J = 0 TO (lin(i, 3) - lin(i, 1)) STEP 20
x = lin(i, 1) + j
y lin(i, 2) + m * j
LINE (x - 4, y + 4)-(x + 4, y - 4), 0
LINE (x + 4, y + 4)-(x - 4, y - 4), 0
NEXT j
NEXT i

'draw magenta grid lines
20 FOR i = 200 TO 800 STEP 200
LINE (i, 0)-(i, 1000), 13
LINE (0, i)-(1000, i), 13
NEXT i

'copy screen to alternate screen
PCOPY 0, 1

'put icons on map if the entire icon will fit on the screen

FOR i = 1 TO 12
IF soldat(i, 3) < 1 OR soldat(i, 3) > 984 THEN GOTO 21
IF soldat(i, 4) < I OR soldat(i, 4) > 979 THEN GOTO 21
IF soldat(i, 15) < 1 THEN

PUT (soldat(i, 3), soldat(i, 4)), darray, PSET
GOTO 21

END IF
IF soldat(i, 1) = 1 THEN

PUT (soldat(i, 3), soldat(i, 4)), barray, PSET
IF soldat(i, 2) = 1 THEN DRAW "c5 uS r10 d8 18"

ELSE
PUT (soldat(i, 3), soldat(i, 4)), rarray, PSET
IF soldat(i, 2) 1 1 THEN DRAW "c5 u8 r10 d8 18"

END IF
21 NEXT i
nexttime - 5000
END SUB

SUB move (ind, tnow)

'MOVE moves all icons. It updates the soldier location,
moves the icon, checks the new location for obstacles, and 4

'schedules the next move. Moves are scheduled by this
'subprogram, the SHOOT subprogram, aDd the ENDBREACH
'subprogram.

232
.1



SHARED nexttime, bmovetime, rmovetime, rbrch, bbrch

'if the soldier is dead or nonmoving, ,et the next scheduled
'event and schedule another move

IF soldat(ind, 9) = 0 OR soldat(ind, 15) = 0 THEN
schedule (4,ind,20)
nexttime = tnow + 100
GOTO 29

END IF

'if the soldier is BLUE continue

IF soldat(ind, 1) = 1 THEN

'if a breach is in progress, go to the next event

IF bbrch > 1 THEN
nexttime = tnow + 100
GOTO 29

END IF

'if the icon i s on the map screen erase it

x = soldat(ind, 16)
y = soldat(ind, 17)
IF x > 986 OR x < 0 THEN GOTO 28
IF y > 979 OR y < 0 THEN GOTO 28
SCREEN , , 1, 0
GET (x, y)-(x + 16, y + 24), array2
SCREEN , 0, 0
PUT (x, Y), array2, PSET

'compute the new soldier location

28 soldat(ind, 3)=soldat(ind,3) + 20 * COS(soldat(ind,S))
soldat(ind,4) = soldat(ind, 4) +20*SIN(soldat(ind, 8))
x = soldat(ind, 3): y = soldat(ind, 4)

'if the new location will accept an icon, place it on the
'screen

IF x > 980 OR x < 0 THEN GOTO 29
IF y > 979 OR y < 0 THEN GOTO 29
PUT (x, y), barray, PSET

'check the new location for obstacles

soldat(ind, 16) = x: soldat(ind, 17) = y
hexx = INT(x / 20 + 1)
hexy = INT(y / 20 + 1)
IF mapl(hexx, hexy, 1) < .5 AND bbrch < 1 THEN

233



/

CALL breach(soldat(ind, 1), tnow)
nexttinte = tnow + 500
GOTO 29

END IF

'if the soldier is a squad leader, draw a box around the
icon
'and compute the new movetime

IF soldat(ind, 2) = 1 THEN
DRAW "c5 u8 r10 d8 110"
hexx = INT(soldat(ind, 3) / 20 + 1)
hexy = INT(soldat(ind, 4) / 20 + 1)
IF mapl(hexz, hexy, 1) < .2 THEN

bmovetime 10 + 10 * RND / soldat(ind, 10)
ELSE

bmovetime 10 + 10 * RND / (mapl(hexx, hazy, 1) '
& soldat(ind, 10))

END IF
END IF

'schedule the next move

27 CALL schedule(4, ind, tnow + bmovetime)
GOTO 29 'return

END IF

'if the soldier is RED then

'if RED is breaching, cancel move

IF rbrch > I THEN
nexttime = tnow + 100
GOTO 29

END IF

'if the soldier's icon in on the screen, erase it

x = soldat(ind, 16): y = soldat(ind, 17)
IF x > 986 OR z < 0 THEN GOTO 26
IF y > 979 OR y < 0 THEN GOTO 26
SCREEN , 1, 0
GET (z, y)-(x + 16, y + 24), array2
SCREEN , , 0, 0
PUT (z, y), array2, PSET

'compute new soldier location

26 soldat(ind,3) = soldat(ind, 3) + 20 * COS(soldat(ind, 8))
soldat(ind, 4) = soldat(ind, 4) + 20 * SIN(soldat(ind, 8))
z soldat(ind, 3): y = soldat(ind, 4)

234

I - . ..



'if the new location is on the map, display it

IF x > 980 OR x < 0 THEN GOTO 29
IF y > 979 OR y < 0 THEN GOTO 29
PUT (x, y), rarray, PSET
soldat(ind, 16) = x: so!dat(ind, 17) = y

hexx = INT(soldat(ind, 3) / 20 + 1)
hezy = INT(soldat(ind, 3) / 20 + 1)

'check new location for obstacles

IF mapl(hexz, hexy, 1) = .1 AND rbrch < 1 THEN
CALL breach(soldat(ind, 1), tnow)
nexttime = tnow + 500
GOTO 29
END IF

'if the soldier is the squad leader, draw a box around the
'icon and compute the next movetime

25 IF soldat(ind, 2) = 1 THEN
DRAW "c5 uS r10 d8 110"
hexx = INT(soldat(ind, 3) / 20 + 1)
hexy = INT(soldat(ind, 3) / 20 + 1)
IF mapl(hexx, hexy, 1) < .2 THEN

rmovetime = 10 + 10 * RND / soldat(ind, 10)
ELSE

rmovetime = 10 + 10 * RND / (mapl(hexx, hexy, 1)
* & soldat(ind, 10))

END IF
END IF

'schedule the next move
CALL schedule(4, ind, tnow + rmovetime)

29 END SUB

SUB react (tgt, time)

'REACT is the subprogram that determines the reaction of a
'soldier to being shoot at and missed. The subprogram is
'scheduled by the SHOOT aud INDIRECT subprograms,

SHARED nexttime

'pick is the random number used for the Bernoulli trial

pick = RND

tif the soldier is standing then

235



IMP

IF soldat(tgt, 10) = 1 THEN
IF pick <= .5 THEN

soldat(tgt, 10) = 2
GOTO 191

END IF
IF pick <= .7 THEN

soldat(tgt, 10) = 3
GOTO 191

END IF
IF pick <= .8 THEN

soldat(tgt, 10)== 3
soldat(tgt, 9) 0
GOTO 191

END IF
GOTO 191
END IF

'if the soldier is crouchi g then

IF soldat(tgt, 10) = 2 THEN
IF pick <= .4 THEN

soldat(tgt, 10) = 3
GOTO 191

END IF
IF pick <= .5 THEN

soldat(tgt, 10) = 3
soldat(tgt, 9) 0
GOTO 191

END IF
GOTO 191

END IF

'if the soldier is prone

IF soldat(tgt, 10) = 3 THEN
IF pick <= .5 THEN

soldat(tgt, 9) = 1
ELSE

soldat(tgt, 9) = 0
END IF

END IF

'update the history attribute to reflect current posture

191 soldat(tgt, 7) soldat(tgt, 10)

'if the soldier is a squad leader then ensure the rest of
'his squad adopts the new posture

IF soldat(tgt, 2) = 1 THEN
side = soldat(tgt, 1)
FOR i 1 TO 12

IF soldat(i, 1) = side THEN

236

y \N _• . ,.-.. ./ " ., "



soliat(i, 9) = soldat(tgt, 9)
soldat(i, 10) soldat(tgt, 10)
soldat(i, 7) = soldat(tgt, 10)

END IF
NEXT i

END iF
nexttime time + 100
END SUB

SUB refresh

'REFRESH is a program that refreshes the screen. It copies
'the map screen off the hidden screen and then places the
'icons on it. REFRESH is scheduled by the BREACH
subprogram.

'copy the map screen

PCOPY 1, 0

'place icons on the map

FOR i = 1 TO 12
IF soldat(i, 3) < 1 OR soldat(i, 3) > 984 THEN GOTO 160
IF soldat(i, 4) < 1 OR soldat(i, 4). > 979 THEN GOTO 160
IF soldat(i, 15) = 0 THEN

PUT (soldat(i, 3), soldat(i, 4)), darray, PSET
GOTO 160

END IF
IF soldat(i, 1) > 0 THEN

PUT (soldat(i, 3), soldat(i, 4)), barray, PSET
IF soldat(i, 2) = 1 THEN DRAW "c5 u8 r10 d8 18"

ELSE
PUT (soldat(i, 3), soldat(i, 4)), rarray, PSET
IF soldat(i, 2) = 1 THEV DRAW "c5 uS r10 d8 18"

END IF
160 soldat(i, 16) = soldat(i, 3)
soldat(i, 17) = soldat(i, 4)
NEXT i
nexttime = 5000
END SUB

SUB schedule (act, ind, T)

'SCHEDULE adds events to the event calendar. It is called
'by all subprograms that schedule events.

/23

237 ,

-.. //-- :. -



I /

SHARED nexttime

'search the event calendar for an empty matrix row

FOR i = 1 TO S.)
IF event(i, 4 > 0 THEN GOTO 31 V
event(i, 1) = act
event(i, 2) = ind
event(i, 3) = T
GOTO 32

31 NEXT i
32 nexttime T
END SUB

SUB selct (obs, time)
- A

'SELECT is the subprogram that allows soldiers to select a
'target to engage from the targets on their target list. It
'is scheduled by ACQUIRE whenever one or more targets has
'been detected.

SHARED nexttime
IF soldat(obs, 15) = 0 THEN
nexttime = 5000
GOTO 103
END IF

'inititialize the count of number of targets

count = 0

'loop to count number of potential targets and sum Pdet
'values

FOR i = 1 TO 12
IF ptgt(obs, i) <= 0 THEN GOTO 101
total = ptgt(obs,'i) + total
count = count + 1

101 NEXT i

'if observer is a squad leader schedule a formation change

IF soldat(obs, 2) = 1 THEN CALL schedule(7, obs, time + 20)
pick RND
T= 0

'loop to pick a target

FOR j = 1 TO 12

238



!/

IF ptgt(obs, j) <= 0 THEN GOTO 102

'normalize all pdet values

target = ptgt(obs, j) / total
T = T + target
IF pick < T THEN

' if the soldier is a BLUE squad leader and has detected
more 'than one target, schedule an indirect fire event

IF soldat(obs, 2) = 1 AND soldat(obs, 1) > 0 THEN
IF count > 1 THEN

soldat(obs, 14) = j
xl = soldat(obs, 3)
yl = soldat(obs, 4)
x2 = soldat(j, 3): y2 = soldat(j, 4)
range = ((xl - x2) ^ 2 + (yl - y2) 2) ^ .5

'if range to target is less than 100m, do not request fire

IF range > 100 THEN CALL schedule(9, J, time + 20)
END IF

END IF

'schedule a direct fire engagement

CALL schedule(3, obs, time + 7 + 6 * (RND - .5))

'change firer to a nonmove status

soldat(obs, 9) = 0

'assign target to firer

soldat(obs, 14) = j

'record firer's previous posture

soldat(obs, 7) = soldat(obs, 10)

'reduce firer's posture one level

IF soldat(obs, 10) = 3 > 1 THEN soldat(obs,10)
& soldat(obs,10) - 1

'end select

GOTO 103
END IF

102 NEXT j
nexttime = time + 100
103 END SUB

239

-' -o



SUB shoot (obs, time)

'SHOOT is the subprogram that processes all direct fire
'events. The subprogram is scheduled by the SELECT target
'subprogram.

SHARED nextttime
SHARED losl
IF soldat(obs, 15) 0 THEN
nexttime = 5000
GOTO 119

END IF
'B is the variable that represents the number of rounds per
'burst. It is used to control sound.

B =3

'Ir target, observer location, target location and range'

tgt soldat(obs, 14)
xl = soldat(obs, 3): yl = soldat(obs, 4)
x2 = soldat(tgt, 3): y2 = soldat(tgt, 4)
range = (((xl - x2) 4 2 + (yl - y2) 4 2) .5)

'check line of sight to target

CALL los(obs, tgt, xl, yl, z2, y2, range / 1000)

'if no los, then that target is removed from the potential
'target list and must be reacquired.

IF (losl < 1) THEN
ptgt(obs, tgt) = 0
'schedule another SEARCH
CALL schedule(l, obs, time + 10 + 10 * (RND - .5))
GOTO 119

END IF

'go to line based on weapon type

ON soldat(obs, 11) GOTO 111, 112, 113, 114, 115, 116

'M16 Phit

111 IF soldat(obs, 12) < 3 GOTO 118 'check ammo
'assign Phit
phit = pl(INT((range + 50) / 100), soldat(tgt, 10))
decrement ammo count
soldat(obs, 12) soldat(obs, 12) - 3
GOTO 117

240

N: I/



'AK74 Phit

112 IF soldat(obs, 12) < 3 GOTO 118 'check am•mo
phit = p2(INT((range + 50) / 100), soldat(tgt, 10))
soldat(obs, 12) = soldat(obs, 12) - 3
GOTO 117

'SAW Phit

113 B = 6
IF soldat(obs, 12) < 6 GOTO 118 'check ammno
IF range < 350 THEN

phit = p3(INT((range + 50) / 100), soldat(tgt, 10))
soldat(obs, 12) = soldat(obs, 12) - 6
GOTO 117
END IF
soldat(obs, 12) = soldat(obs, 12) - 6
IF 750 > range > 349 THEN
phit = p3(4, soldat(tgt, 10))
COTO 117

ELSEIF 750 < range < 900 THEN
phit = p3(5, soldat(tgt, 10))

GOTO 117
ELSE
phit = p3(6, soldat(tgt, 10))
GOTO 117

END IF

'M203 Phit

114 IF range > 300 THEN 'make weapon choice based on range
IF soldat(obs, 12) < 3 GOTO 118
B = 3
phit = pl(INT((range + 50) / 100), soldat(tgt, 10))
soldat(obs, 12) = soldat(obs, 12) - 3
GOTO 117

END IF

'If range < 300, use M203

B =1
soldat(obs, 5) = soldat(obs, 5) - 1
IF soldat(obs, 5) < 1 THEN

soldat(obs, 11) = 1
END IF

'assign impact point

x =x2 + triag(-.032, 0, .032) * range
y = y2 + triag(-.096, 0, .096) * range

'compute Phit using Carlton's Function

241



/,

phit : EXP(-((x- x2) 2 + (y - y2) 2) /25)

GOTO 117

'User input weapon Phit -

115 IF soldat(obs, 12) < 3 GOTO 118
phit = p5(INT((range + 50) / 100), soldat(tgt, 10))
soldat(obs, 12) = soldat(obs, 12) - 3

COTO 117

'user input weapon Phit

116 IF soldat(obs, 12) < 3 GOTO 118
phit = p6(INT((range + 50) / 100), soldat(tgt, 10))
soldat(obs, 12) = soldat(obs, 12) - 3

'assign firing time to soldier attribute 6, this increases
'firers' signature

117 soldat(obs, 6) = time

'compute angle of observer-target line

k z ATN(ABS((y2 - yl) / (x2 - xl)))
IF (y2 > yl) AND (x2 < xl) THEN k = 3.141 - k
IF (y2 < yl) AND (x2 < xl) THEN k = k - 3.141
IF (y2 < yl) AND (x2 > x1) THEN k = -k
IF (yl = y2) AND (x2 < xl) THEN k = 3.141
x = x1: y = yl + 10

'draw line of fire

FOR 1 1 TO range STEP 5
LINE (z, y)-(zl + i *yCOS(k), Y1 + 10 + i * SIN(k)), 4
x = xl + i * COS(k): y=y+1 + i *SIN(k)
NEXT i

'if the grenade launcher is used, make the explosion

IF B = 1 THEN
CALL explode(x, y, 10)
CALL refresh
GOTO 120

END IF

'if direct fire is used, make a sound to represent rounds
'firing

PLAY "t80"
FOR i = 1 TO B
SOUND 250, 2.5
PLAY "164 nO"
NEXT i

242

- . -



//

'erase the red line

x = xl: y yl + 10
FOR i = 1 TO range STEP 5
LINE (x, y)-(xl + i * COS(k), yl + 10 + i * SIN(k)), 15
x = xl + i * COS(k): y yl + 10 + i * SIN(k)
NEXT i
LINE (x, y)-(xl + range * COS(k), yl + 10 + range *
SIN(k)),15

'Bernoulli trial to determine outcome of engagement

120 IF RND > phit THEN
LOCATE 2, 1: PRINT USING "Miss P(hit) = .#'; phit
CALL schedule(6, tgt, time + 3) 'schedule react to fire

ELSE
LOCATE 2, 1: PRINT USING "Hit P(hit) = .###"; phit

'assign weapon type for recording hit data for kill card

wpn = soldat(obs, 11)
IF soldat(obs, 1) < 1 AND wpn = 3 THEN wpn = 8
IF wpn = 4 AND B > 1 THEN wpn = 1
tgtrec(wpn, 1) = tgtrec(wpn, 1) + 1
IF tgtrec(wpn, 2) < range THEN tgtrec(wpn, 2) = range
IF tgtrec(wpn, 4) < 1 THEN tgtrec(wpn, 4) = range
IF tgtrec(wpn, 4) > range THEN tgtrec(wpn, 4) = range
tgtrec(wpn, 3) = tgtrec(wpn, 3) + range

'call impact to see results of hit

CALL impact(tgt)
END IF

'random number draw to see whether to reengage the target

IF RND > .7 THEN 'schedule another engagement
CALL schedule(3, obs, time + 5)
GOTO 119

ELSE 'schedule a search
soldat(obs, 9) = 1
x = time + 5 * (RNR - .3) * 5
IF range > 50 THEN

soldat~obs, 9) = 1
soldat(obs, 10) a soldat(obs, 7)

ELSE 'don't move if range < 50m
soldat(obs, 9) = 0

END IF
CALL schedule(l, obs, z + 3)
GoTo 119

END IF

243



'adjusts magazine and ammo count to reflect reloading

118 soldat(obs, 13) * soldat(obs, 13) - 1
IF soldat(obs, 10) 1 THEN soldat(obs, 12) = 30
IF soldat(obs, 10) = 2 THEN soldat(obs, 12) = 40
IF soldat(obs, 10) = 3 THEN soldat(obs, 12) = 200
IF soldat(obs, 10)'= 5 THEN soldat(oLs, 12) = 30
IF soldat(obs, 10) = 6 THEN soldat(obs, 12) = 30

'schedule a search

CALL schedule(3, obs, time + 5 + (RND -,3) * 5)
119 END SUB

FUNCTION triag (a!, d!, B!) STATIC

'This function is used to replicate the normal distribution

'VARIABLES: a-= lower bound = mode - 2 stddev
d = mode
B = upper boumd = mode + 2 stddev

r = RND
IF (r < (d - a) / (B - a)) THEN
triag = a + SQR((d - a) * (B - a) * r)
ELSE
triag = B - SQR((B- d) * (B - a) * (1- r))
END IF
END FUNCTION

SUB wire (obs)

'WIRE is called from the ACQUIRE subprogram, if a wire
'obstacle has been input the user. The subprogram first
'determines if the current azimuth of the squad leader
'intersects the obstacle. If it does, the subprogram checks
'if the squad leader has line of sight to the obstacle. If
sso, a message reflecting obstacle detection is displayed on
'the screen. The subprogram is not accessed again by that
'side, unless that side makes a direction change. In that
'case, the obstacle flag is updated and ACQUIRE again calls
'WIRE.

SNARED bwire, rwire, 1, bbrch, rbrch
IF soldat(obs, 1) = 0 THEN 129

'1st compute the constants of the squad leader's azimuth and

244



'the wire obstacle linear equations

bl = soldat(obs, 3): y = soldat(obs, 4)
x = bl
a = soldat(obs, 8)' a = slope of line
i=1

'lin is the array containing the horizontal and vertical
start ;and end points of the obstacle

'm = slope of obstacle linem2 = (fin(i, 4) - lin~i, 2)) / (lin~i, 3) - fin(i, 1))
b2 = y intercept of obstacle line
b2 = lin(i, 2) - m2 * lin(i, 1)

'loop checks every meter along the obstacle to see if a line
'having the slope (azimuth) of the squad leader) intersects
'the obstacle

FOR j = lin(i, 1) TO lin(i, 3)
r = ((j - x) 2 + (m2 * j + b2 - y) ^ 2) .5
IF ABS(x + r * COS(a) - J) > 1 THEN GOTO 127'no intersect
IF ABS(y + r * SIN(a) - j * m2 - b2) > 1 THEN GOTO 127
'hexx = horizontal coordinate of terrain cell

hexx = INT(x / 20 + 1)

'hexy = vertical coordinate of terrain cell

hexy = INT(y / 20 + 1)

'adjust elevation to reflect current posture of squad leader

oht = 1
IF soldat(obs, 10) > 2 THEN oht = .25
IF soldat(obs, 10) = 2 THEN oht = .5

'compute height of observer and obstacle

z1 = mapl(hexx, hezy, 3) + 1.8 * oht
z2 = mapl(INT(j / 20 + 1), INT((m2 * j + bk) / 20 1 1),

& 3)+1.5

IF mapl(hexx, hexy, 2) < 1 THEN
w=1

ELSE
w 0

END IF

'slope of observer-obstacle line

slope (z2 - z1) / r

245



' k = azimuth

k = soldat(obs, 8)

'loop to check los to obstacle, same method as the los
FOR h I TO r

n =x + h * COS(k): yn =y+ h * SIN(k)
IF.INT(xn / 20 + 1) = hexx AND INT(yn/ 20 + 1) hexy

& THEN GOTO 128
hexx = INT(xn / 20 + 1): hexy = INT(yn / 20 + 1)

'check if still in wooded area and adjust elevation
'accordingly

IF w = 1 AND mapl(hexx, hexy, 2) = 1 THEN w = 0

IF w • 0 AND mapl(hexx, hexy, 2) < 1 THEN
znew = mapl(hexx, hexy, 3) + 10 / mapl(hexx, hexy, 2)

ELSE
znew = mapl(hexx, hexy, 3)

END IF

'if the ne% elevation is less than the previous cell, no los

IF znew <= z1 + slope * h THEN GOTO 128
GOTO 129 /

128 NEXT hI

'if no intervening terrain blocks line of sight display
'message and update obstacle detection flag

IF soldat(obs, 1) > 0 THEN
strng$ = "Blue"
bwire = 1

ELSE
strng$ = "Red "
rwire = 1

END IF
LOCATE 1, 1
PRINT USING "& soldier detects obstacle at ####";

& strng$; j; m2 * j + b2
GOTO 129

127 NEXT j
'if the outer loop has cycled all the way through, then the
'current azimuth does not intersect the obstacle and a
'bypass is possible. Update the obstacle breach status and
'the obstacle detection status

IF soldat(obs, 1) > 0 THEN
bwire = 2
bbrch = 1

246



ELSE
rwire = 2
rbech = 1

END~ IF
129 END SUB

247



BiblioaraDhy

1. Anderson, L. B., J.H. Cushman, A. L, Gropman, V.P.
Roske. "A Toxonomy for Warfare Simulation" A Workshop
Reyort. Military Operations Research Society, 1987.

2. Battilega, John A. and Judith K. Grange. The Military
Applications of Modeling. Washington: Government
Printing Office, 1984.

3. Bonder, Seth. "An Overview of Land Battle Modeling in
the US," Proceedinas 13th U.S. Army Operations Research
Sym•P•ium: 73-88, (November 1974)

4. Brewer, Garry D. and Martin Shubik. The War Game: A
Critigue of Military Problem Solving. Cambridge:
Harvard University Press, 1979.

5. Cox, CPT David K. SPARTAN: An Instuctional Hiah
Resolution Land Combat Modej. MS Thesis,
AFIT/ENS/GOR/92M-7. Air Force Institute of Technology,
Wright-Patterson AFB OH, March 199k (No DTIC yet)

6. Department of the Army. Army Model Improvement
Program. AR 5-11 (draft). Washington: Government
Printing Office, 1990.

7. Department of the Army. US Army TRADOC Analysis
Center. CASTFOREM Update: Methodoloaies.
TRAC-WSMR-TD-92-011. Washington: Government Printing
Office, April 1992.

S. Department of the Army. US Army TRADOC Analysis Center.
JANUS (T) Documentation. Washington: Government
Printing Office, June 1986.

9. Dunnigan, James F. The Complete Waraames Handbook. New
York: William Morrow and Company, 1980.

10. Encineering Desian Handbook. Army Weapon Systems
Analysis. Part One. DARCOM-P 706-101. U.S. Army
Material Development and Readiness Command, Washington:
Government Printing Office, November 1977.

11. Government Accounting Office, Guidelines for Model
Evaluation: Exposure Draft. PAD-79-17, Washington:
Government Printing Office, January 1979.

248

• /_ _ _. . . /



12. Government Accounting Office. Motlis, Data, and War: A
Critique of the Foundation for Defense Analysis.
Washington: government Printii.• Office, 1980.

13. Hartman, James K. Lecture Notes in High Resolution
Combat Modeling. Unpublished Not s, 1985. Class
handout for OPER 775, Land Combat .odeling I. School of
Engineering, Air Force Institute of Technology,
Wright-Patterson %FB OH, July 1991.

14. Joint Analysis Directorate, Organization of the Joint
Chiefs of Staff. Catalogue of Warcamina and Military
Simulations Modeling. JADAM 207-91. Washington:
Government Printing Office, 1991.(AD-A213-970)

15. Krueger, John L. "Pitfalls in Combat Simulations,"
Military Review LXXII: 20-25. (June 1992).

16. Law, Averill M. and W David Kelton. Simulation hodelin.
and Analysis. New York: McGraw-Hill Book Company, 1982.

17. Lawrence Livermore National Laboratory's Conflict
Simulation Laboratory. The JANUS Algorithms Guide.
California: University of California, 1990.

18. Nance, Richard E. and James D. Arthur. "The Methodology
Roles in the Realization of a Model Development
Environment," Proceedings of the 1988 Winter
Simulation Conference. 220-225. New York: IEEE Press,
1988.

19. Pritsker, A. Alan B. Introduction to Simulation and
SLAM II. New York: Halsted Press Book, 1986.

20. Rand Corporation. Systems Analysis and Policy Planning:
Applications in Defense. Edited by Quade, E. S. and W.
J.Boucher. New York: Elsevier, 1968.

21. Ross, John G. "An exclusive AFJI interview with:
General Frederick M. Franks, Zir., USA," Armed Forces
Journal International. 68-69. (October 1992).

249



/7.7

Vita /

Captain Edwin H. Harris III was born on 29 June 1961 in

Durham, North Carolina. He graduated from Lake Braddock

Secondary School in Fairfax, Virginia in 1979 and entered -.

the United States Military Academy in July 1979. Ee

graduated from West Point, with a Bachelor of Science degree

in Civil Engineering, in 1983.

Upon graduation, he was commissioned as an Infantry

officer. After a series of military schools at Fort

Benning, Georgia, CPT Harris was assigned to the 82nd

Airborne Division at Fort Bragg, North Carolina. While

there, he served as an infantry platoon leader, a rifle

company executive officer, and a battalion air operation's

officer.

In 1987, after attending the Infantry Officer's

Advanced Course, CPT Harris was assigned to a mechanized

infantry battalion in the 1st Armored Division in Germany.

During his four years in Germany, CPT Harris served as a

battalion adjutant, company commander, and brigade plans

officer.

In August 1991, after h s assignment in Germany, CPT

entered the School of Engine ring, Air Force Institute of

Technology.

Permanent Address: 2007 Stonegate
Denton, TX 76205

250

*1i

Of 71



Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pumiir -soot'..: ufooen 'or tis .oirecton eGt mtormatGn .s ettmated to aveqe i tour Oer -e=oorse. nc;.airg the time tot revoe i ,g$,itruction. •aerc.ning existing ata sources.
gatmeeIq amd •amtaming tme cata needeo. and ýomcietnq anm reviewmnq :ne collection of information. iena comments regaro g :rti ouroen estmate or 3nv o ,tme isoan• Ot t.tii
oIection of tintcrmation. inuoing suggestions *or reoucng this o•uren to vasninqton Headcuarters Seces. 0irecrorate tor fi •o-atio, Doetations an eoort.s, 12• 5 efmecom

oavi ftrgriwav. 35,te 1204. A(tington. 'A 22212-4302, nto TO n? lt.fie eof Maniagement and •uaget. alermvorx: Reduction Project ý07C4-2188). Wasnngton, DC 20503.

1. AGENCY USE ONLY (Leave biank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

IMarch 1993 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

SPARTAN II: AN INSTRUCTIONAL HIGH RESOLUTIjION
LAND COMBAT MODEL

6. AUTHOR(S)

CPT Edwin H. Harris III, USA

:7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology AFIT/GOR/ENS/92M-09
SWright-Patterson APB, Ohio 45433

9. SPONSORING, MONITORING AGENCY N AME(S) AND ADDRESS(ES) 110. SPONSORING/MONITORINGSAGENCY REPORT NUMBER---. -

EKNS/AFIT
Wright-Patterson APB, Ohio 45433

i11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unlimited Distribution

13. ABSTRACT(Maximum 200 words)S project improved SPARTAN, a high resolution land combat model

demonstrator. SPARTAN was originally developed as a hands-on trainer for land
combat modeling students. The new SPARTAN is built to demonstrate the techniques
used in the current generation of US Army high resolution models. Like the
original, this model is primarily a small scale attrition (both direct and
indirect fire) model. The model represents 12 soldiers involved in the following
processes: target search, target selection, direct fire engagement, indirect fire
engagement, movement, reaction to fire, obstacle breaching, and some elements of
com•and and control. The emphasis on model development was to keep the logic
simple, yet accurately portray current modeling techniques as used in JANUS and
CASTFOREM. SPARTAN contains numerous features that allow the user to observe, in
great detail, how the model represents the various activities of the soldiers.
An educational assessment of the model was performed by students and faculty at
the Air Force Institute of Technology.

15. NUMBER OF PAGES
aModels, High Resolution 261

Weapons Effects 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT ..OF REPORTI OF THIS PAGEI OF ABSTRACTUNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 75401-280-5500 Standard Form 298 (Rev 2-89)
Pn,.eiold Wy ANSi Std. Z39-18



DTIC


